L —

154 Section 1.7 Packet 'Routing

<™
6.7\ Packet Routing
]

All of the dlgorithms described thus far in the chapter have the property
that the right data always manages to get to the right place at the right
time. Although making sure this happened was sometimes tricky, the flow
of data almost always followed a regular pattern. For some applications
(e.g., circuit simulation), this will not be the case, and we may need to
route the data in a very nonregular fashion. In general, we may have to
solve several packet routing problems just to implement a single algorithm.

A packet routing. problem consists of a set of M packets, each with a
desired destination address p;. Initially, the packets are stored individually
among the N nodes of the network, and for the most part we will assume
that the desired destinations are all different (i.e., that piFp;for1 <i<
j < 'M). (Such problems are called one-tg-one routing problems.) The
problem is to route the packets to their desired destinations using local
control in as few steps as possible.

. We will describe a variety of algorithms for packet routing in this sec-
tion. We start with greedy algorithms in Subsection 1.7.1. Greedy al-
gorithms run optimally on a linear array, but do not work as well on a
two-dimensional array. For example, a greedy algorithm can be made to
run in 2¢/N — 2 steps (the fewest possible, in general) on a VN x /N ar-
ray, but only if we allow queues of packets to build up at some processors.
In the worst case, some queues can grow to contain as many as O(vN)
packets. For random (i.e., average case) routing problems, however, the
situation is better. For example, we show in Subsection 1.7.2 that for ran-
dom routing problems, the maximum queue size needed is a small constant
with probability close to 1. We also analyze a dynamic model of routing
in which packets are generated at random over a long period of time. The
material in Subsection 1.7.2 provides our first probabilistic analysis of an
algorithm. The probabilistic methods developed in this subsection will be
used quite heavily in later chapters.

In Subsection 1.7.3, we describe and analyze a simple randomized algo-
rithm for packet routing. The randomized algorithm solves any one-to-one
routing problem on a v'N x VN array in 2v/ N + o(v/N) steps using queues
of size O(log N) with high probability. Randomized algorithms are often
better than algorithms that work well on avérage because the probabil
ity that a randomized algorithm fails is independent of the problem being
solved. This is not true of algorithms that work well for random problems.

1.7.1 Greedy Algorithms 155

(In other words, there is no worst-case input for 2 randomized algorithm.)
The material in Subsection 1.7.3 is quite useful and will be developed fur-
ther in Chapter 3.

In Subsection 1.7.4, we describe deterministic algorithms for packet
routing that precondition the packets using the sorting algorithms from
Section 1.6. The best of these algorithms run in nearly 2v/N steps and
have constant size queues for all routing problems. Unfortunately, the
algorithms become more complicated as the running time improves.

In Subsection 1.7.5, we describe a very simple algorithm for off-line
packet routing. The off-line routing problem is the same as the on-line
routing problem studied in Subsections 1.7.1-1.7.4, except that we are
allowed to perform some global precomputation before the routing begins.
Off-line algorithms are generally less useful than on-line algorithms since
the routing problem must be known (and, in some sense, solved) in advance.
The algorithm described in Subsection 1.7.5 is so simple, however, that we
will make use of it at several points later in the text.

For the most part, we concentrate on one-to-one routing problems in
the word model in this section. There are many other routing models of in-
terest, however, and we conclude in Subsection 1.7.6 with a brief discussion
of different routing models and algorithms. In particular, we mention some
of the issues involved in many-to-one routing problems (such as combining),
and in bit-serial routing models. Much of this material will be developed
more fully in Chapter 3, when we discuss message routing algorithms at

1.7.1 Greedy Algorithms

ny algorithm that routes every packet along a shortest path to its desti-
nation can be considered to be a greedy algorithm. For example, consider
the following algorithm for routing packets on a linear array. At each step,
each packet that still needs to move rightward or leftward does so. The
algorithm terminates when all packets have reached their destination. We
will refer to this algorithm as the greedy algorithm for linear arrays.

The first thing to notice about the greedy algorithm for linear arrays is
that it is well defined, at least if (as we will often assume) each processor
contains just one packet at the beginning and the end of the routing. In
particular, two packets will never be contending for use of the same edge
(in the same direction) at the same time. Hence, whenever a packet is

Py

supposed to move according to the algorithm, it is able to do so. This is

156 Section 1.7 Packet Routing

initial
configuration

step 1

step 2

step 3

step 4

final
configuration

Figure 1-89 Routing five packets with the greedy routing algorithm on a 6-cell
linear array. Each packet keeps moving until it reaches its destination.

not to say that two packets will never reside in the same processor at the
same time (this can happen), but no two packets which are travelling in
the same direction will ever reside in the same processor at the same time.

Another important fact about the greedy algorithm on a linear array is
that each packet reaches its destination in d steps, where d is the distance
that the packet needs to travel. This is because the distance between
each packet and its destination decreases by one during each step of the
algorithm. Hence, the algorithm always terminates in at most N.— 1 steps.
For example, see Figure 1-89.

Unfortunately, matters aren’t nearly as simple when we run a greedy
algorithm on most other networks. One of the biggest problems that arises
with other networks is that fwo or more packets might be contending for

1.7.1 Greedy Algorithms 157

Figure 1-90 A packet routing problem that leads to contention for the edge
leading out of node x at step 2.

use of the same edge (in the same direction) at the same time. For exam-
ple, consider the situation illustrated in Figure 1-90. In this example, the
packets destined for processors ¢ and d move to node z on the first step.
At the second step, both packets contend for the edge leading from node z
into node ¢. Since only one packet can advance, the other must be queued,
and wait until later before it can proceed.

It is not difficult to see that the example illustrated in Figure 1-90
can be made much worse by having two streams of packets merge into a
single stream at node z. For example, see Figure 1-91. In such a case, the
queue at node x might grow to contain as many as IV packets, unless we
constrain the algorithm not to advance packets into a processor that has a
large queue.

There are many strategies for arbitrating between packets that are
contending for the same edee (e.g., the packet that needs to go farthest
goes first), and for preventing the buildup of large queues (e.g., we could
preset a maximum threshold ¢, and simply not advance a packet forward
into a processor with a queue that is at or near the threshold). Not sur-
prisingly, the choice of queueing protocol can have a substantial impact
on the performance of the resulting algorithm. In what follows, we will

158 Section 1.7 Packet Routing

Figure 1-91 A packet routing problem which leads to a queue of size N in
node xz, unless the packets in nodes a1, ..., an, b1, ..., by are restricted from
advancing because of a large queue ahead.

1.7.1 Greedy Algorithms 159

1Y

consider the scenario in which queues are allowed to grow arbitrarily and

ngfve_i_by r giving priority to the packet that needs to
travel farthest in that direction. (We call this the farthest-first contention
resolutmn,protocol) We will show that this simple protocol results in a
(2\/_ — 2)-step routing algorithm for a VN x /N array if each packet
is first routed to its correct column, and then on to its destination within
that column. For simplicity, we will sometimes refer to this algorithm as
the basic greedy algorithm for two- dimensional arrays, For example, we
have 1llustratedma1g_6§raﬁon of the algorithm for a 3 x 3 routing problem
in Figure 1-92. Variations of the greedy algorithm derived by altering the
queueing and contention resolution protocols are considered in the exer-

cises.

v(nalysis of the Basic Greedy Algorithm on an Array

The analysis of the running time of the basic greedy algorithm on a VN %
VN array is divided into two stages. The first stage focuses on the routing
activity that takes place in the rows during the first VN — 1 steps.

The first fact to observe about the basic greedy algorithm is that every
packet reaches the correct column during the first /N — 1 steps. This is
because there is never any contention for row edges. Each row acts like
a linear array—packets needing to move rightward or leftward do so in
lockstep fashion. Of course, it is possible for packets to pile up at a node,
but the buildup does not affect the analysis of the running time during this
stage of the algorithm.

After the first \/_ — 1 steps, therefore, every packet is in ‘the correct
column Y “addition, some packets may have even initiated movement
W1th1n a column toward their destination, although we will not need to
make use of this fact in our analysis. Unfortunately, however, several of
the packets within a column might be piled up in large queues, and so we
’ cannot naively apply the same analysis that we used for linear arrays to
argue that the column routing is completed in VN — 1 steps. In fact, if we
use the wrong protocol to arbitrate edge contention, we might need many
more than v N —1 steps to finish up. By giving priority to the packets that
need to go farthest, _however, all of the column routing can be accomp11shed

in VN — 1 steps, resultmg 1ﬁ a total of 24/ N — 2 steps overall. This fact is

‘(@W;q?f;;‘_ll e stor ‘w.u_h..,...: —

proved in the following lemma.

160 Section 1.7 Packet Routing

3,2 3.3

initial configuration after step 2

after step 1 after step 3

Figure 1-92 Operation of the basic greedy algorithm on a 3 x 3 array. Each
packet moves left or right until it reaches the correct column, and then moves up
or down until it reaches the correct row (i.e., its destination). Edge contenfion is
resolved by giving priority to the packet that needs to go farthest in that direction
(e.g., the packet destined for node 3,2 moves ahead of the packet destined for
" node 2,2 during step 2). No constraint is placed on queue size.

&l

1.7.1 Greedy Algorithms 161

LEMMA 1.5 Consider an N-node linear array in which each node con-
tains an arbitrary number of packets, but for which there is at most one
packet destined for each node. If edge contention is resolved by giving
priority to the packet that needs to go farthest, then the greedy algorithm
routes all the packets in N — 1 steps.

Proof. Since the leftward and rightward moving packets never in-
terfere with each other, we can restrict our attention to the rightward
moving packets without loss of generality. To show that N — 1 steps are
sufficient to route the rightward moving packets, we will use an argu-
ment that is reminiscent of the analysis of odd-even transposition sort
presented in Subsection 1.6.1. In particular, for each i, we will show that
each of the packets that is destined for one of the rightmost i nqd_es ha,s

condition holds for all i (1<t < N) s1mu1taneously, then the routing of
rightward moving packets is completed in IV — 1 steps, thereby proving
the lemma.

Fix ¢ (1 £ 4 < N) and consider the packets destined for the rightmost
i nodes. For ease of reference, we will call these packets priority packets.
The first point to notice about priority packets is that they can never be
delayed by a nonpriority packet. This is because if a priority packet and
a nonpriority packet are contending for an edge, then the priority packet
moves ahead since (by definition) it has farther to go. Hence, we can
ignore the nonpriority packets entirely when analyzing the movement of
the priority packets.

Consider the rightmost priority packet at the start of the algorithm.
(If there is a tie, then pick the packet that will move on the first step.)
Since this packet cannot be delayed by nonpriority packets, it moves
rightward at each step until it reaches the rightmost ¢z nodes. This hap-
pens within N — z steps. More importantly, the packet is never located
in the same node with another priority packet after the ﬁrst step (untll
it reaches its destmatlon that is). This is because the other priority
packets can’t catch up. Hence, this packet can’t delay any of the other
priority packets after the first step.

Next, consider the second rightmost priority packet after the first
step. (Break ties by choosing the packet that will move at the second
step) Although this packet might have been delayed during the first

g_ggﬁ_@gg .p};;quty,pﬁgliet_ ,a‘_ftﬁrf i;hsﬁ..seeol_;d _§te_p“ This is because following

B

v

162 Section 1.7 Packet Routing i

packets cannot catch up, and the preceding packet is not slowed down.
Hence, the second priority packet reaches the rightmost ¢ cells within
N —i+1 steps, and neither of the first two packets can delay any of the
other priority packets after step 2.

By continuing to argue in this fashion, we find that the ith rlghtmost
priority packet after step i — 1 (if there is one) cannot be delayed afte ter
step ¢ — 1, because all of the other i ~ 1 (at most) priority packets are
already on their way r1ghtward and they cannot be slowed down after
step i —2. At worst, the ith packet is still in the first node after stepi—1,
and has NV —{ edges to traverse before reaching the last ¢ nodes. Hence,
the last priority y packet reaches the rightmost ¢ nodes within N —1 _steps,

thereby completing the proof of the lemma. [|

By Lemma 1.5, we know that the ¢olumn routing is completed within
\/ﬁ — 1 steps after the last packet reaches its correct column. Hence all
the packets reach their destination within 2+/N — 2 steps. In general, this
is the best that we can hope for since a packet might have to trave] from
processor (1,1) to processor (v/N,v/N), and this will always take at least
2v/N — 2 steps.

Although the basic greedy algorithm is optimal in terms of worst-case
running time, the maximum queue size can be as large as 2\/N —1in the

W_(?_{?t case. To see Why, consider the routing problem Where the packets
in processors (1, 2), (1,3), ... () and (2,1), (2, 2), co (2, z‘g— 1)

are destined for processors (3, 3) (4,), . (\/_ Y)Y, All of these
VN — 2 packets arrive in processor (2, ‘/—) w1th111 ‘/_ 1 steps, but only
VN

5~ — 1 of them can be passed across the edge from processor (2,) to

processor (3,) during this time. Hence, the queue of packets Waltmg to
go from processor (2, ‘/_) to processor (3, ‘/3_) will eventually become as

large as VN — 2 — (‘/_—-)—2\/~—1

Fortunately, things aren’t nearly so bad on average. For example, we
will show in the next subsection that if each packet is headed to a random
destination, then at most O(1) packets are ever contained in the same
queue at the same time, with probability very close to 1. We will also show
that packets are very rarely delayed, on average. In fact, we will show
that the expected number of times a packet is delayed on the way to its
destination is a constant, independent of N or the distance travelled by
the packet.

392 Section 3.1 The Hypercube

3.1 The Hypercube

In this section, we define the hypercube and explain why it is such a pow-
erful network for parallel computation. Among other things, we will show
how the hypercube can be used to simulate all of the networks discussed
in Chapters 1 and 2. In fact, we will find that the hypercube contains (or
nearly contains) all of these networks as subgraphs. This material is both
surprising and important because it demonstrates how all of the parallel
algorithms discussed thus far can be directly implemented on the hyper-
cube without significantly affecting the number of processors or the running
time. Hence, we will quickly understand one of the main reasons why the
hypercube is so powerful. '

We begin the section with some definitions and a brief discussion of the
hypercube’s simplest properties in Subsection 3.1.1. In Subsection 3.1.2,
we show that the hypercube is Hamiltonian, and we explain the correspon-
dence between Hamiltonian cycles in the hypercube and Gray codes. We
also prove that any N-node array (of any dimensionality) is a subgraph of
the N-node hypercube (assuming that N is a power of 2).

In Subsection 3.1.3, we describe several embeddings of an (N —1)-node
complete binary tree in an N-node hypercube. Although the (N —1)-node
‘complete binary tree is not a subgraph of the N-node hypercube, we will
find that a complete binary tree can be simulated very efficiently on the
hypercube.

More generally, we will show that the N-node hypercube can efficiently
simulate any binary tree in Subsection 3.1.4. In particular, we will show
how to grow an arbitrary M-node binary tree in an on-line fashion in an
N-node hypercube so that neighboring nodes in the tree are nearby in
the hypercube and so that at most O(M/N + 1) tree nodes are mapped
to each hypercube node with high probability. The analysis of the tree-
growing algorithm involves an interesting relationship between one-error-
correcting codes and hypercubes that has numerous applications. We also
define the hypercube of cliques in Subsection 3.1.4 and prove that it is
computationally equivalent to the hypercube.

In Subsection 3.1.5, we show how to efficiently simulate a mesh of trees
on the hypercube. As a consequence, we will find that all of the algorithms
described in Chapter 2 can be implemented without significant slowdown
on a hypercube of approximately the same size.

We conclude in Subsection 3.1.6 with a brief survey of some related

3.1.1 Definitions and Properties 393

000 010

f—

01 11 101 in

N=2 N=4 N=8§

Figure 3-1 The N-node hypercube for N = 2, 4, and 8. Two nodes are linked
with an edge if and only if their strings differ in precisely one bit position. Di-
mension 1 edges are shown in boldface.

network containment and simulation results for the hypercube.

3.1.1 Definitions and Properties

The r-dimensional hypercube has N = 2" nodes and r2"! edges. Each
node corresponds to an r-bit binary string, and two nodes are linked with
an edge if and only if their binary strings differ in precisely one bit. As a
consequence, each node is incident to r = log N other nodes, one for each
bit position. For example, we have drawn the hypercubes with 2, 4, and 8
nodes in Figure 3-1.

The edges of the hypercube can be naturally partitioned according
to the dimensions that they traverse. In particular, an edge is called a
dimension k edge if it links two nodes that differ in the kth bit position. We
will use the notation «* to denote the neighbor of node u across dimension
k in the hypercube In particular, given any binary string u = v, - * Ulog N
the string w* is the same as u except that the kth bit is complemented.
More generally, we will use the notation wut*s*2:+%} to denote the string
formed by complementing the k;th, kth, ..., and k.th bits of u. For
example, 0011010% = 0111010 and 0011010134} = 0000010 in a 128-node
hypercube.
The dimension k edges in a hypercube form a perfect matching for each
k1< k< log V. (Recall that a perfect matching for an N-node graph
S a set of N/2 edges that do not share any nodes.) Moreover, removal of
he dimension k edges for any k£ < log N leaves two disjoint copies of an

394 Section 3.1 The Hypercube

j—;'r-—node hypercube. Conversely, an N-node hypercube can be constructed
from two %—node hypercubes by simply connecting the ¢th node of one %-
node hypercube to the ith node of the other for 0 <i< Z. For example,
see Figure 3-2.

In addition to a simple recursive structure, the hypercube also has
many of the other nice properties that we would like a network to have.
In particular, it has low diameter (log N} and high bisection width (N/2).
The bound on the diameter is easily proved by observing that any two
nodes ¥ = ujuy - - - Ugy and v = vy, - - - Uiog v are connected by the path

Uitz =~ Ulog N — V1l * * * Ujpp y — Vilalz * - Upg v
g g

o UV - vlogN—-lqugN = UiUg - Vieg N+

The bound on bisection width ig established by showing that the smallest
bisection consists of the edges in a single dimension. The proof follows as
a special case of Theorem 1.21 from Section 1.9.

As an interesting aside, it is worth noting that a hypercube can be
bisected by removing far fewer than % nodes, even though % edges are
required to bisect the N-node hypercube. For example, consider the parti-
tion formed by removing all nodes with size [-Iﬂiﬁj and l-lﬂgz,—N-] (The size,
or weight, of a node in the hypercube is the number of 1s contained in its
binary string.) A simple calculation reveals that removal of these nodes
forms a bisection with ©(N/yTog N) nodes, which is the best possible.
The details of these and some related results are left to the exercises (see
Problems 3.3-3.7).

It is also worth noting that the hypercube possesses many symmetries.
For example, it is node and edge symmetric. In other words, by just rela-
belling nodes, we can map any node onto any other node, and any edge onto
any other edge. More precisely, for any pair of edges (u,v) and (v, v') in an
N-node hypercube H, there is an automorphism o of H such that o(u) = o
and o(v) = v'. (An automorphism of a graph is a one-to-one mapping of
the nodes to the nodes such that edges are mapped to edges.) In fact,
there are many such automorphisms. For example, let v = wu,u, - - - Ulog N
v = ujul- **Ujog s k be the dimension of (u,v), and k' be the dimen-
sion of (u',v"). Then for any permutation 7 on {1,2,...,log N} such that
(k') = k, we can define an automorphism o with the desired property by
setting :

3.1.1 Definitions and Properties 395

000 001 001 000

100 101 101 100

110 111 111 110

010 011 011 010
(a)

—_— o —

i
— il

®)

Figure 3-2 Construction of a four-dimensional hypercube (b) from two three-
dimensional hypercubes (a). Dashed edges form a matching between the two three-

dimensional cubes.

396 Section 3.1 The Hypercube

000 001

o 0

010 011

100

Figure 3-3 Two labellings of the 8-node hypercube. By relabelling appropriately,
we could have mapped edge e = (000,001) to any position in the network.

O(@1T2+ Tiogn) = (Tr(1) D Un() B UL) | (Zrizy B Un(z) D Usy) | - |
(mvr(log N) © Ux(log Ny D u’;og N)- (3.1)

(Here and throughout Chapter 3, we use the notation o | B to denote
the concatenation of o and 8.) It is a simple exercise to check that ¢
is an automorphism of the hypercube with the desired properties. (See
Problem 3.10.)

As an example, we have illustrated two labellings of the 8-node hyper-
cube in Figure 3-3. In the example, we have mapped the edge (000, 001)
to edge (110, 100) using the automorphism

o(z12225) = (2: ® 1) | (23 D 1) | zo.

In general, we can rearrange the dimensions of the edges in any order that
we want (by varying 7) without altering the network. (See Problems 3.11—
3.13.) We will use such symmetries routinely in the chapter to simplify
explanations.

3.1.2 Containment of Arrays

One of the most interesting properties of the N-node hypercube is that it
contains every N-node array as a subgraph. This result holds true even
for high-dimensional arrays and even if wraparound edges are allowed. For
example, the embedding of a 4 x 4 array in a 16-node hypercube is shown

Section 3.2 The Butterfly, Cube-Connected-Cycles, and... 439

3.2 The Butterfly, Cube-Connected-Cycles, and
Benes Network

Although the hypercube is quite powerful from a computational point of
view, there are some disadvantages to its use as an architecture for parallel
computation. One of the most obvious disadvantages is that the node
degree of the hypercube grows with its size. This means, for example, that
processors designed for an N-node hypercube cannot later be used in a 2N-
node hypercube. Moreover, the complexity of the communications portion
of a node can become fairly large as N increases. For example, every node
in a 1024-processor hypercube has 10 neighbors, and every node in a one
million-processor hypercube has 20 neighbors.

In order to circumvent the difficulties associated with node degrees
in hypercubes, several variations of the hypercube have been devised that
have similar computational properties but bounded degree (usually 3 or 4).
In this section, we discuss three such variations: the butterfly, the cube-
connected-cycles, and the Benes§ network. Each is a simple variation of the
hypercube, and each is very similar to the others in structure.

The section is divided into four subsections. In Subsection 3.2.1, we
define the networks and mention some of their most important properties,
including their relationships to each other as well as to the hypercube. In
particular, we show that the butterfly, cube-connected-cycles, and Benes
network are virtually identical from a computational standpoint. We also
show how to partition the edges of a Benes network into paths that connect
the nodes at the first level to the last level in any desired pattern. This
powerful property of the Benes network will be used at several points later
in the chapter and should not be overlooked. For example, we apply the re-
sult in Subsection 3.2.2 to show that an N-node butterfly, cube-connected-
cycles or Benes network can simulate any other bounded-degree N-node
network with an O(log N)-factor slowdown, the least possible in general.
Similar results hold for the hypercube, shuffle-exchange, and de Bruijn
graphs. Hence, we will find that the hypercubic networks are universal
in the sense that they can simulate any other network with a comparable
number of processors and wires with only a logarithmic factor slowdown.

The relationship between the butterfly-related networks and the hyper-
cube is explored further in Subsection 3.2.3, where we show how {o simulate
any normal hypercube algorithm on the butterfly, cube-connected-cycles,
and Benes network with only constant slowdown. This material is par-

440 Section 3.2 The Butterfly, Cube-Connected-Cycles, and. . .

ticularly important since it means that all of the algorithms described in
Chapter 2 can be implemented on these networks with only a constant
factor loss in efficiency.

We conclude in Subsection 3.2.4 with a review of network containment
results analogous to those proved for the hypercube in Subsections 3.1.2—
3.1.6. Among other things, we find that the butterfly, cube-connected-
cycles, and Benes network contain linear arrays and complete binary trees
with constant dilation, but that any embedding of higher-dimensional ar-
rays requires logarithmic dilation, which is the worst possible. We also
prove a general result that every N-node connected network contains an
N-node linear array with dilation 3.

3.2.1 Definitions and Properties

In what follows, we describe the butterfly, a variant of the butterfly called
the wrapped butterfly, the cube-connected-cycles, and the Benes network.
All four networks have a similar structure, and all four are computationally
equivalent.

The Butterfly

The r-dimensional butterfly has (r + 1)2" nodes and r2r+! edges. The
nodes correspond to pairs (w,i) where i is the level or dimension of the
node (0 < i <) and w is an r-bit binary number that denotes the row of
the node. Two nodes (w,4) and (w’, i) are linked by an edge if and only if
i’ = ¢+ 1 and either:

1) w and v’ are identical, or
2) w and w' differ in precisely the #th bit.

If w and w' are identical, the edge is said to be a straight edge. Otherwise,
the edge is a cross edge. For example, see Figure 3-19. In addition, edges
connecting nodes on levels ¢ and i + 1 are said to be level i + 1 edges.
The butterfly and hypercube are quite similar in structure. In partic-
ular, the ¢th node of the r-dimensional hypercube corresponds naturally
to the ith row of the r-dimensional butterfly, and an ith dimension edge
(u,v) of the hypercube corresponds to cross edges ((u,? — 1}, (v,i)) and
((v,i ~ 1), {u,4)) in level i of the butterfly. In effect, the hypercube is just
a folded up butterfly (i.e., we can obtain a hypercube from a butterfly by
merging all butterfly nodes that are in the same row and then removing
the extra copy of each edge). Hence, any single step of N-node hypercube

row 000 () D
row 001 S ‘
row 010 . ‘

row 011

"V‘ = N n0de (011,3)
row 100 ."" '
§ N
| " \——— straight edge

r row 110

cross edge

row 111 _/

3.2.1 Definitions and Properties 441

Figure 3-19 The three-dimensional butterfly. Level i straight edges link nodes
in the same row for 0 < i < r. Level i cross edges link nodes in rows that differ
in the ith bit. -

442 Section 3.2 The Butterfly, Cube-Connected-Cycles, and. ..

calculation can be simulated in log N steps on an N(log N + 1)-node but-
terfly by having the ith row of the butterfly simulate the operation of the
tth node of the hypercube for each 3.

Because of the great similarity between the butterfly and the hyper-
cube, the butterfly has several nice properties. First, it has a simple re-
cursive structure. For example, it can be seen from Figure 3-19 that one
r-dimensional butterfly contains two (r — 1)-dimensional butterflies as sub-
graphs. (Just remove the level 0 nodes of the r-dimensional butterfly.
Alternatively, we could remove the level 7 nodes, as is done in Figure 3-20,
although it takes a little longer to realize that the resulting graph is simply
two (r — 1)-dimensional butterflies.)

Another useful property of the r-dimensional butterfly is that the level
0 node in any row w is linked to the level r node in any row w’ by a unique
path of length r. The path traverses each level exactly once, using the
cross edge from level 4 to level 7 4+ 1 if and only if w and v’ differ in the
(¢+1)st bit. For example, see Figure 3-21. As a simple consequence of this
fact, we can see that the N-node butterfly has diameter O(log N).

Like the hypercube, the butterfly also has a large bisection width. In
particular, the bisection width of the N-node butterfly is ©(N/log N). To
construct a bisection of this size, simply remove the cross edges from a
single level. To show that Q(N/log N) is a lower bound on the bisection
width of the network, we can apply the same technique used to prove
Theorem 1.21 in Section 1.9. (For example, see Problem 3.89.)

The Wrapped Butterfly

For computational purposes, the first and last levels of the butterfly are
sometimes merged into a single level. In particular, node (w,0) is merged
into node (w,r) for each w. The result is an r-level graph with 72" nodes,
each of degree 4. Two nodes (w, %) and (w’, i’} are linked by an edge if and
only if i’ = ¢+ 1 mod r and either w = w’ or w and w' differ in the #'th bit.
Such edges are called level i’ edges. To distinguish between this structure
and the unmerged butterfly of Figure 3-19, we will refer to the former as
a wrapped butterfly and the latter as an ordinary butterfly. For example, a
three-dimensional wrapped butterfly is illustrated in Figure 3-22.

At first glance, it might seem that the wraparound edges could make
the wrapped butterfly more powerful than the ordinary butterfly from a
computational point of view. This turns out not to be the case, however.
In fact, the relationship between the butterfly and wrapped butterfly is

Section 3.4 Packet-Routing Algorithms 511

3.4 Packet-Routing Algorithms

One of the most important components of any large-scale general-purpose
parallel computer is its packet-routing algorithm. This is because most
large-scale general-purpose parallel machines spend a large portion of their
resources making sure that the right data gets to the right place within a
reasonable amount of time.

We already studied packet-routing algorithms for arrays in Chapter 1
and meshes of trees in Chapter 2. Although the algorithms described in
these chapters are optimal for arrays and meshes of trees, they are not es-
pecially efficient in a general setting. For example, the routing algorithms
for arrays use few processors but are relatively slow. The routing algo-
rithms for meshes of trees, on the other hand, are fast but use an excessive
number of processors.

We have also studied the packet-routing problem for hypercubic net-
works in Sections 3.2 and 3.3. In particular, we showed how to solve any
fixed N-packet permutation routing problem in O(log N) steps on an N-
processor butterfly or shuffle-exchange graph in Theorems 3.12 and 3.16.
THe solution to a routing problem found by this approach is fast and ef-
ficient, but suffers from the limitation that there is no O(log N)-step al-
gorithm known for finding the routing paths on-line. In other words, we
proved in Theorems 3.12 and 3.16 that there is a fast and efficient solu-
tion to any permutation routing problem on a hypercubic network, but we
don’t know how to find the solution quickly in parallel. For some applica-
tions, this constraint doesn’t matter, since we can afford to precompute the
solution (off-line) and then store the routing information in the network.
For many applications, however, the limitation is crucial, since we may
not know the routing problem ahead of time. For such applications, we
will need to develop on-line routing algorithms (i.e., algorithms for which
the local routing decisions are made without precomputation and without
knowledge of the global routing problem).

In this section, we describe several on-line algorithms for routing on hy-
percubic networks. For the most part, the algorithms will perform quickly
(taking ©(log N) steps) and efficiently (using NV processors to route N pack-
ets), although all of the algorithms described in this section can perform
very badly in the worst case. In Section 3.5, we will describe algorithms
for sorting that can be used to construct routing algorithms that are guar-
anteed to always perform well, but the sorting-based algorithms are quite

512 Section 3.4 Packet-Routing Algorithms

complicated and are often not as useful in practice.

We begin our discussion of packet-routing algorithms with some defi-
nitions and a description of some of the most common routing models in
Subsection 3.4.1. We then define the greedy routing algorithm, and analyze
its worst-case performance in Subsection 3.4.2. Unfortunately, we will find
that the worst-case performance of the greedy algorithm is very poor and
that several important routing problems exhibit worst-case performance.

On the other hand, there are also large classes of important problems
for which the greedy algorithm performs very well. For example, we will
show in Subsection 3.4.3 that the greedy algorithm performs optimally for
packing, spreading, and monotone routing problems. These special classes
of routing problems arise in many applications, and we will use them fre-
quently throughout the remainder of Chapter 3. For example, we show
in Subsection 3.4.3 how to decompose an arbitrary routing problem into
a sorting problem and a monotone routing problem. Since any monotone
routing problem can be solved in O(log N) steps using the greedy algo-
rithm, this gives us an automatic way to convert any sorting algorithm
into a packet-routing algorithm. Even though sorting N items quickly
on a hypercubic network is a challenging task, this means that all of the
sorting algorithms that are described in Section 3.5 can be converted into
packet-routing algorithms with very little additional effort.

Greedy algorithms also perform well for average-case routing problems.
In fact, we will show in Subsection 3.4.4 that almost all N-packet-routing
problems can be solved in O(log N) steps by using the greedy algorithm on
an IN-processor hypercubic network. Hence, we will find that the greedy al-
gorithm is optimal (up to constant factors) for random routing problems in
a hypercubic network. This fact is quite important, since so many parallel
machines use variations of the greedy algorithm to solve routing problems.
In addition, we can use this fact to design a randomized algorithm for solv-
ing worst-case problems. In particular, we will show in Subsection 3.4.5
how to use randomness to convert any worst-case one-to-one routing prob-
lem into two average-case problems, thereby solving any one-to-one routing
problem in O(log V) steps with high probability.

One problem with the naive greedy algorithm is that it allows packets
to pile up at certain nodes in the network, resulting in queues which (for
most routing problems) can grow as large as O(log N) in size. In Subsec-
tion 3.4.6, we show how to modify the naive greedy algorithm so that all
the queues stay small, and so that the overall performance remains good.

3.4.1 Definitions and Routing Models 513

We also show how to generalize the result to apply to a much larger class
of networks (including arrays).

Another problem with the naive greedy algorithm is that it doesn’t
always work well for some many-to-one routing problems, even if random-
ization is used. In Subsection 3.4.7, we show how to modify the naive
greedy algorithm to handle many-to-one routing problems. We also de-
scribe an effective strategy for combining packets that are headed for the
same destination, if that is desired.

In Subsection 3.4.8, we describe a variation of the greedy routing al-
gorithm known as the information dispersal algorithm. The information
dispersal approach to routing makes use of coding theory to partition a
packet into many subpackets, only some fraction of which need to be suc-
cessfully routed in order for the contents of the packet to be reconstructed
at the destination. As a consequence, some packet components that get
stuck in a congested area or that encounter a faulty component can be
discarded without harm. As we will see in Section 3.6, information disper-
sal is also a useful tool when it comes to organizing data in a distributed
ImMemory.

We conclude our study of packet routing with a discussion of circuit-
switching and bit-serial routing algorithms in Subsection 3.4.9. The algo-
rithms described in this subsection differ from those discussed in Subsec-
tions 3.4.4-3.4.8 in that each packet needs to have a dedicated, uncongested
path through the network from its source to its destination in order for the
message to be transmitted. Even in this more restricted routing model,
however, we find that the greedy algorithm performs fairly well for most
(i.e., random) routing problems.

3.4.1 Definitions and Routing Models

As was mentioned in Section 1.7, there are many different types of rout-
ing models. For the most part, we will focus our attention on the store-
and-forward model (also known as the packet-switching model) of packet
routing in Section 3.4. In the store-and-forward model, each packet is main-
tained as an entity that is passed from node to node as it moves through
the network and a single packet can cross each edge during each step of the
routing. Depending on the algorithm, we may or may not allow packets to
pile up in queues located at each node. When queues are allowed, we will
generally make efforts to keep them from getting very large.

In Subsection 3.4.9, we consider the circuit-switching (or path-lockdown)

514 Section 3.4 Packet-Routing Algorithms

model of routing. In the circuit-switching model of routing, the entire path
from the source of a packet to its destination must be dedicated to the
packet in order for the packet’s data to be transmitted.

For the most part, we will focus our attention on static routing prob-
lems (i.e., those for which the packets to be routed are present in the
network when the routing commences) in Section 3.4. Many of the results
that we obtain can also be applied to dynamic routing problems (in which
packets arrive at the network at arbitrary times and the routing proceeds
in a continuous fashion), although we will only specifically discuss the case
of dynamic routing problems in Subsection 3.4.4.

There are many different types of static routing problems. Generally,
we will assume that each processor starts with at most one packet, and, for
the most part, we will focus our attention on the simplest case of one-to-one
routing problems. A routing problem is said to be one-to-one if at most
one packet is destined for any processor and if each packet has precisely one
destination. We will also consider many-to-one and one-to-many routing
problems. A routing problem is said to be many-fo-one if more than one
packet can have the same destination. It is said to be one-to-many if a
single packet can have multiple destinations (i.e., if copies of one packet
need to be sent to more than one destination). _

When many packets are headed for the same destination, the usual
problems with congestion in the network can become even more severe.
For example, if at most one packet can be delivered to its destination
during each step, then most of the packets that are headed for a common
destination will experience significant delays due to (if for no other reason)
the bottleneck at the destination. Such bottlenecks are often referred to as
hot spots. Needless to say, hot spots can be a serious problem since they
can also cause packets which are headed for other destinations to become
delayed.

We will describe many methods for overcoming or minimizing the ef-
fects of hot spots and bottlenecks resulting from multiple packets having
the same destination. One approach to dealing with such problems is to
allow packets that are headed for the same destination to be combined.
When combining is allowed, we can merge two packets P; and P, into a
single (possibly larger) packet provided that P; and P, are headed for the
same destination and that P, and P, are contained in the same node at
the same time. Packet-routing algorithms that make use of combining will
be described in Subsections 3.4.3 and 3.4.7.

3.4.2 Greedy Routing Algorithms and Worst-Case Problems 515

Throughout Section 3.4, we will insist that our algorithms be on-line.
This means that each processor (or switch) must decide what to do with
the packets that pass through it based only on its local control and the
information carried with the packets. In particular, we will not allow a
global controller to precompute routing paths as was done in the proofs of
Theorems 3.12 and 3.16. As a consequence, our algorithms will be able to
handle any packet-routing problem immediately using only local control.

As was mentioned previously in the text, the development of an efficient
routing algorithm for a network enables that network to efficiently emulate
any other network. More generally, it will enable us to get the right data
to the right place at the right time. As a consequence of the on-line feature
of the routing algorithm, we will also be able to emulate abstract parallel
machines such as a parallel random access machine (PRAM). Methods for
simulating PRAMs on hypercubic networks will be studied extensively in
Section 3.6.

3.4.2 Greedy Routing Algorithms and Worst-Case
Problems

We begin our study of packet routing algorithms on hypercubic networks
by considering the problem of routing N packets from level 0 to level
log N in a log N-dimensional butterfly. In particular, we assume that each
node (u,0) on level 0 of the butterfly contains a packet that is destined
for node (r(u),log N} on level log N where n : [I, N] — [1,N] is a per-
mutation. For example, we have illustrated an 8-packet routing problem
in Figure 3-48. In this example, we have selected n to be the bit-reversal
permutation (i.e., (uy ++ Uogn) = Urog v * * * U1, Where uy -+ - U1y y denotes
the binary representation of u).

At first glance, the routing problem shown in Figure 3-48 does not
seem particularly difficult. Indeed, any of the packets in the problem can
be easily routed to its destination simply by sending the packet along the
unique path of length log NV through the butterfly to its destination. For
example, we have illustrated this path for the packet destined for node
(001, 3) in Figure 3-48.

In general, the unique path of length log N from a level 0 node {u, 0)
to a level log N node (v,log N} in the butterfly is known as the greedy
path from (u,0) to {v,log N). In the greedy routing algorithm, each packet
is constrained to follow its greedy path. When there is only one packet
to route, it is easy to see that the greedy algorithm performs very well.
Trouble can arise when many packets have to be routed in parallel, however.

516 Section 3.4 Packet-Routing Algorithms

% % % %
s 7, ey v, % /s e, 75
000}>() () .v‘ row 000

row 001

‘.v. row 010

.(@, row 011
001 .‘%‘% () row 100
101 row 101
011 _/ row 110
111 O @, row 111

Figure 3-48 An 8-packet routing problem on the three-dimensional butterfly.
In this problem, the packet starting at node {ujugus,0) wants to go to node

{uguouq, 3) for each ujusus.
(100,0) is shown in boldface.

The greedy path for the packet starting at node

3.4.2 Greedy Routing Algorithms and Worst-Case Problems 517

The problem is that many greedy paths might pass through a single node
or edge. For example, the packets starting at nodes (000, 0) and (100, 0)
in Figure 3-48 both must pass through edge ({000, 1), {000, 2)) on the way
to their destinations. Since only one of these packets can use the edge at
a time, one of them must be delayed before crossing the edge.

It is not difficult to check that the congestion problem arising in the
example illustrated in Figure 3-48 is not overly serious. At most two packets
will ever contend for a middle-level edge, and every packet can reach its
destination in a total of 4 steps using the greedy algorithm.

When N is larger, however, the problem can be much more serious. In

fact, a total of
210512'\1'—1 — /N/z

greedy paths will use the edge ((0 .+ 0, Iﬂg%), (0--.0, lﬁgﬂ)) in a log N-
dimensional butterfly when the greedy algorithm is used to route N packets
according to the bit-reversal permutation. (Here, we have assumed for
simplicity that log NV is odd. A similar result holds when log N is even. For
example, see Problem 3.179.) The reason is that the packet which starts
at node (u, - - ~U10g =100 - - 0, 0) must travel to node (0 " 00wogrizy -y,
log N) along the path

(ul"-U105512V—100-"0,0) — 0u2-~-u11051;_100---0,1>
_— ..
1 -3
= <0---0uﬁ%oo-.-o,f—g]\r—>
— <0...000...0,10_g]§__l>
(o o00-0, 28 1)
3
o <0---00u,°5§_10-.-0,1—°g%>

l

-

— (0"'00'7.1:10521"-1 -+ -y, log N).

Note that this path contains the edge

e_—_<0...000...0,1£g_u>_+<0...000...0,M>,

2 2

518 Section 3.4 Packet-Routing Algorithms

since the middle bit of both w4 - * Uleg N 00---0and O--- 00?.51:»512\'—1 e Uy
is 0. There are 23— = +/N/2 possible values of Uy - Unesy-a, and

thus /N/2 packets must traverse e when the greedy algorithm is used
to route the packets. This means that at least one of the packets will be
delayed by «/N/2—1 steps, and that the greedy algorithm will take at least
vV IN/2+1og N — 1 steps to route all of the packets to their destinations. In
fact, the greedy algorithm takes precisely /N/2+log N — 1 steps to route
the bit-reversal permutation when log NV is odd. (See Problem 3.181.)
Unfortunately, the bit-reversal permutation is not the only permutation
that requires @(\/N) steps to route using the greedy algorithm. Indeed,
many natural permutations exhibit poor performance with the greedy al-
gorithm. For example, the commonly used transpose permutation

W(ul "t Uleg N UlogN g ulogN) = UlogN g+ Ulog NUy * * * Utog ¥

also requires ©(+/N) steps using the greedy algorithm. (See Problem 3.182.)

In fact, the bit-reversal permutation and the transpose permutation are
(up to constant factors) worst-case permutations for greedy routing on the
butterfly. This is because every one-to-one routing problem can be solved
in O(VN) steps on a log N-dimensional butterfly. We will prove this fact
in the following theorerm.

THEOREM 3.22 Given any routing problem on a log N -dimensional
butterfly for which at most one packet starts at each level 0 node and at
most one packel is destined for each level log N node, the greedy algo-
rithm will route all the packets to their destinations in O(v/N) steps.

Proof. For simplicity, we will assume that log N is odd. The case
when log NV is even is handled in a similar fashion.

Let e be any edge in level 7 of the log N-dimensional butterfly (0 <
t < log V), and define n; to be the number of greedy paths that traverse
e. We first observe that n; < 21 for every ¢. This is because there are at
most 2°~ nodes at level 0 which can reach e using a path through levels
1,2,...,1—1. For example, only the packets starting at nodes {000, 0)
and (100,0) can use the edge ({000, 1), (000,2)) in a three-dimensional
butterfly, no matter where each packet is destined.

Similarly, n; < 26V~ for every i. This is because there are at
most 2'°8¥~¢ nodes at level log N which can be reached from e using a
path through levels i4+1,¢+2, ..., log N. For example, only the packets

3.4.2 Greedy Routing Algorithms and Worst-Case Problems 519

ending at nodes (000, 3) and (001, 3) can use the edge ({000, 1), (000, 2}),
no matter where the packets originate.

Since any packet crossing e can only be delayed by the other n; — 1
packets that want to cross the edge, the total delay encountered by any

packet as it traverses levels 1, 2, ..., log N can be at most
log N ﬂ% logN
Z (n; —1) < Z -1y Z 2losN=i _1og N
=1 i=1 ,5=1_°_5_§1V_-|:_§_
_ 2log,;\f+1 + log.gf—l _ logN . 2

3vVN

= —— —logN —2.
vz ¢
Hence, the total time to complete any one-to-one routing problem is at
most O(v N), as claimed. |

The preceding analysis does not specifically deal with the problem of
packets piling up in queues. Indeed, the queues at nodes in the middle
levels of the butterfly might grow to be as large as ©(v/N) if we do not
limit their size. (See Problem 3.183.) We can restrict the growth of the
queues by not allowing any packet to move forward across an edge if there
are too many packets (say ¢) in the queue at the other end of the edge.
The problem with limiting the queue sizes, however, is that packets can be
delayed even further. In fact, if we restrict queue sizes to be O(1) in the
butterfly, then the greedy algorithm can be forced to use ©(N) steps to
route some permutations. (See Problem 3.185.) ‘

For small values of N, the worst-case performance of the greedy routing
algorithm is not so bad. This is because v/ N and log N are not all that
different when N is small (say, less than 100). For large N, the worst-case
performance of the greedy algorithm becomes more of a problem, however,
particularly since so many of the natural permutations (such as bit-reversal
and transpose} exhibit worst-case performance for the greedy algorithm.

Of course, we know from Theorem 3.11 that every permutation can be
routed in 2log N steps on the butterfly with queues of size 1, provided that
we are allowed to use off-line precomputation and that we can make two
passes through the butterfly. Hence, it makes sense to use a special set of
precomputed routing paths (instead of the greedy algorithm) whenever we
encounter one of the known worst-case permutations. As a consequence,
we really don’t have to worry about the worst-case performance of the

520 Section 3.4 Packet-Routing Algorithms

bit-reversal and transpose permutations since we don’t have to route them
using the greedy algorithm.

Unfortunately, there are many bad permutations for the greedy algo-
rithm, and it is not feasible to precompute special routing paths for all
of them using Theorem 3.11. In an attempt to overcome this problem,
special-purpose routing algorithms have been developed that work well
for large classes of permutations that are not handled efficiently by the
greedy algorithm. For example, see Problems 3.188-3.191. While such
special-purpose algorithms can efficiently handle several natural permuta-
tions such as the transpose and bit-reversal permutations, they are still
not sufficient to efficiently handle all of the permutations for which the
greedy algorithm performs poorly. Indeed, we will have to cover a lot more
material before we are ready to describe routing algorithms that perform
well for all permutations.

In the preceding discussion, we concentrated on the problem of routing
packets from one end of the butterfly to the other. (Such routing prob-
lems are sometimes called end-to-end routing problems.) In practice, the
butterfly is often used to route packets in exactly this fashion. It is also
sometimes used to route packets between all of the nodes of the network.
‘When each node of the log N-dimensional wrapped butterfly starts and fin-
ishes with one packet, and each of the log NV packets is greedily routed (in
the same direction) first to the correct row and then to the correct node,
then each of the N log IV packets will be routed to the correct destination
within ©(1/N log N) steps in the worst case. (See Problems 3.192-3.193.)

For simplicity, we will continue to focus our study of hypercubic routing
algorithms on the problem of routing packets from one end of the butter-
fly to the other. The results that we obtain for this particular problem
can usually be extended to hold for most other hypercubic routing prob-
lems of interest. For example, results for end-to-end routing on a log N-
dimensional butterfly can be immediately extended to hold for arbitrary
routing problems (i.e., routing problems where every node may start with
a packet) on an N-node hypercube, since there is such a close relation-
ship between the edges of the log N-dimensional butterfly and the edges of
the N-node hypercube. Moreover, if the packets move through the hyper-
cube in a normal fashion, then the results can also be extended to hold for
arbitrary routing problems on any N-node hypercubic network.

Results for end-to-end routing on a butterfly can also be extended to
hold for arbitrary butterfly routing problems by first routing each packet

3.4.2 Greedy Routing Algorithms and Worst-Case Problems 521

to the level 0 node in its row, and then routing the packet to the level log N
node in its destination row, before routing the packet to its correct des-
tination. The hard part of the routing is the end-to-end routing, since
routing packets within their rows can usually be accomplished in O(log N)
additional steps. In other words, solving an arbitrary routing problem on
a log N-dimensional butterfly is often not much harder than solving log N
end-to-end routing problems on the butterfly. In addition, by using pipelin-
ing, we will often find that solving log N end-to-end routing problems on
a butterfly is not much harder than solving a single end-to-end routing
problem on the butterfly.

Despite the fact that the greedy routing algorithm performs poorly
in the worst case, the greedy algorithm is very aseful. In fact, we will
show that the greedy algorithm often performs exceptionally well. For
example, for many useful classes of permutations, the greedy algorithm
runs in log N steps, which is optimal. And, for most permutations, the
greedy algorithm runs in log N +o(log N) steps. (We prove these important
facts in Subsections 3.4.3 and 3.4.4, respectively.) As a consequence, the
greedy algorithm is widely used in practice.

In what follows, we digress briefly from our study of greedy routing
algorithms on hypercubic networks in order to prove a general lower bound
on the time required for any greedylike algorithm to route a worst-case
permutation on an arbitrary network.

A General Lower Bound for Oblivious Routing

A routing algorithm is said to be oblivious if the path travelled by each
packet depends only on the origin and destination of the packet (and not
on the origins and destinations of the other packets nor on congestion en-
countered during the routing). For example, the greedy routing algorithm
on the butterfly is oblivious, since each packet follows the greedy path to
its destination.

In what follows, we will show that for any N-node, degree-d network
and any oblivious routing algorithm, there is an N-packet one-to-one rout-
ing problem for which the algorithm will take Q(+/N/d) steps to complete
the routing. This means that the worst-case running time of any oblivious
or greedy routing algorithm on the butterfly will be Q(\/_N), a far cry from
the desired bound of O(log N). In fact, this means that the worst-case run-
ning time of th&g_reedy algorithm on any N-node bounded-degree network
is QU(+/N). For the hypercube, the worst-case bound will be Q(vN/log N).

522 Section 3.4 Packet-Routing Algorithms

~~

Hence, we will have to resort to nonoblivious algorithms if we want to be
able to route on-line every one-to-one routing problem in O(log N) steps.

THEOREM 3.23 Let G = (V,E) be any N-node degree-d network,
and consider any oblivious algorithm A for routing packets in G. Then
there is a one-to-one packet-routing problem fm{ which A will take at
least /N /2d steps to complete.

Proof. Since A is oblivious, the path followed by a packet starting
at a node v and ending at a node v (call the path P, ,) depends only
on v and v, and not on any of the other packet origin/destination pairs.
Hence, A can be specified by the N? paths P, , that are used to route
packets (along with some timing information that is not of concern in
the present argument).

Our objective is to find a large subset of nodes u,, v1, s, vg, ...,
Ug, U for which w; # u; for ¢ # j, v; # v; for ¢ # j, and for which P, ,,
Pusvay -+, and P, all contain the same edge e. Then we can prove
that A takes at least -‘g steps to complete any routing for which there is
a packet starting at u; and destined for v; for 1 < 4 < k. The reason is
that all of these packets must eventually pass through edge e, but only 2
packets can do so at any step (one in each direction). In what follows, we
will show how to construct such a set of paths with k = v N /d, thereby
establishing the theorem.

For any node v, consider the N —1 paths P, , that end at v. For any
integer k, let Si(v) denote the set of edges in G which have & or more
of the paths ending at v passing through them. In addition, we define
57 (v) to be the set of nodes that are incident to an edge in Sy (v).

Note that for all k¥ and v, |Si(v)] < 2|S,(v)|, since there are two
nodes incident to each edge. In addition, if k¥ < £, then v € Si(v).
This is because there are NV — 1 paths coming into v, and thus at least
=L of the paths must include the same edge incident to v.

We next show that for k& < %,

V= Si()] < (k- 1){d - 1)|5; (v)].

This is because every node u not in S} (v) is at the start of a path P, ,
that enters S} (v) (since v € S}(v)), and there are a limited number of
paths that can enter Sj;(v) from outside. In particular, for any node
u &€ S;(v), there must be consecutive nodes w and w’ in P, , such that
w & Sp(v) and w’' € Si(v). Since w & S;(v), we know that (w,w’) ¢

R T

3.4.2 Greedy Routing Algorithms and Worst-Case Problems 523

S(v), and thus that there are at most k—1 nodes u for which P, , enters
S (v) on edge (w,w’). In addition, for each of the |S;(v)| choices for w’,
there are at most d — 1 choices for w such that w is adjacent to w' and
(w,w') & Sp(v). (This is because w' has at most d neighbors, and it is
linked to at least one of its neighbors by an edge in Sy(v).) Hence, there
are at most (k — 1)(d — 1)|5;(v)| nodes u for which P, , enters S;(v)
from the outside. This means that

[V = Sl < (d - 1)(k - 1)|S5(v)],

as claimed.

As a consequence of the preceding analysis, we can also conclude
that

N [V = Si()] + S5 (v)]
(k = 1)(d = DISE@)] + S (v)]
2(1+ (k — 1)(d = D)]| Sk ()|

2kd| Sk (v)|,

IAIA A

and thus that

N
> 2
| 5,01 2 o
f(_)—f_a;:ly k < &=L, Setting k = v/N/d, and summing over all N nodes v,
we find that
vev 2 p3/2

N
> 18k(v)] > 5 = 3

Since there are at most Nd/2 edges in G, this means that there is some
edge e for which e € Si(v) for at least

N3%/2 VN
Nd/2 =~ d

=k

different values of v.

Select € and vy, vy, ..., v; such that e € Sp(v;) for 1 < i < k. Let u,
be ore of the k nodes for which P,, ,, passes through e. Let u, # u; be
one of the (at least) & — 1 other nodes for which P,, ,, passes through e.
In general, let u; & {uy, us, . .. ,Uj—1} be one of the (at least) k — (i — 1)
previously unused nodes for which P,, . passes through e. For i < k,
we can always find such a u; since there are at least & choices of w; for

524 Section 3.4 Packet-Routing Algorithms

which P,, ,, passes through e, at most ¢ —1 < k¥ — 1 of which have been
used previously. Hence, we can construct a collection of nodes u, vy,
U, V2, ..., Uy, Vg With k = \/N/d for which u; # u; for ¢ # 7, v; # v;
for 7 # 7, and for which P,, v,y Pupuss ---, and P, ,, all pass-through
some edge e, as claimed. |

It is not difficult to extend the proof of Theorem 3.23 to show that
there are many bad routing problems for any oblivious routing algorithm.
In fact, there are at least (v/N/d)! problems which will require v N/2d
steps to route on an N-node network with maximum degree d. (See Prob-
lem 3.196.) The proof can also be easily extended to hold for N-node
networks with fewer than N inputs and outputs. In particular, given any
oblivious algorithm for routing on an M-input/output, N-node, degree-d
network, there is an M-packet one-to-one routing problem for which the
algorithm will take Q(ﬁﬁ) steps to route all the packets. (See Prob-
lem 3.197.)

Although we won’t discuss randomized routing algorithms or bit-serial
routing for some time, it is worth pointing out here that Theorem 3.23
can also be extended to lower bound the performance of any randomized
oblivious algorithm. In particular, it can be shown that any randomized
oblivious algorithm (where the path for a packet is chosen at random from a
distribution that depends only on the origin and destination of the packet)

must use
log N
o (B Bei)log ¥
log d + loglog N

bit steps with high probability in order to route N packets of length L in
an N-node degree-d network. For example, if we are routing N packets
of length O(log N) on an N-node hypercube, then a randomized oblivi-
ous algorithm will use Q(log® N/ loglog N) bit steps with high probability.
In Subsection 3.5.4, we will describe randomized nonoblivious algorithms
for routing that can solve such problems in O(log N) bit steps with high
probability.

Now that our digression is complete, we will return to our study of the
greedy routing algorithm on the butterfly.

3.4.3 Packing, Spreading, and Monotone Routing Problems

Although the greedy routing algorithm performs poorly in the worst case,
it performs exceptionally well in the best case. In fact, there are many

