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s = fl(z +y),w = fi(s —2),c = fi(y — w) if (abs(x)< abs(y))
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function [s,e] = kahan0(x,y);

TOTE temp =a; a=b; b=temp

end
S = X+Y;
e = y-(s-x);

st+c=x+y

AHAAAH yia kdde Cevydipl TpooBeTéEWwY (x,y)

MTOPOUUE VO UTTOAOYLOOUVE aAKPLPGDC TNV TTPO-

o€yyLon tov adpolouatog s = fl(x + y) koL

gvay (YEVLKA TOAD ULKPO) OLK.VU. ¢ IOV OF o-

PLBUNTLKY) ATeLpNG akplpeLac umopel vo dLop-

VWOOEL TO s KOL VO TO EMAVAPEPEL OTNV TLUN

TOV aKpPLPOVG adpolouatog = + y.
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Nwg xpnoigoTtroigital 1o € (oav carry);

To fl(s) eival To kaAUTepo Suvato (akpifn
oTpoyyUAguon)

dpa n d16pbwon flI(fl(c)+fl(x+y)) dev odnysi o€
aKpIBéoTepO GOpoICHa

AAAG av éxoupe va TTpooBécoupe Kal GAAov apiOuo,
Z, TOTE NTTOPOUME VA «OI0POWOCOUNE>» UE TO C

function [s] = kahanl (x)
s =0; e =0;
for j = 1l:1length(x)

temp = s

y = x(j) +e
s =s +y

e = (temp-s)+y
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A Floating-Point Technique
for Extending the Available Precision

m

T. J. DEKKER*

Received July 26, 1971

Abstract. A technique is described for expressing multilength floating-point arith-
metic in terms of singlelength floating point arithmetic, i.e.the arithmetic for an
available (say: single or double precision) floating-point number system. The basic
algorithms are exact addition and multiplication of two singlelength floating-point
numbers, delivering the result as a doublelength floating-point number. A straight-
forward application of the technique yields a set of algorithms for doublelength
arithmetic which are given as ALGOL 60 procedures.

Let x and ¥ be singlelength floating-point numbers and let
z = fl(x+y);

i.e. z is the result of a singlelength floating-point addition of x and y. Let zz be
the correction term exactly satisfying

z24zz=x+y.
It will be shown that, under various conditions, 2z can be obtained by the formula

zz=f{(x—2) +¥).

We shall derive some formulas for calculating zz which use only singlelength
floating-point addition and subtraction.

First we consider the formula
1010‘;
(4.3) w=fllz—=2), zz=fl(y—w)

and prove some theorems stating sufficient conditions for the validity of this
formula. For practical computation, formulas (4.1) and (4.3) can be written as the
following sequence of ALGOL 60 statements:

(4.4) “ni=x4y;, i=y—(z—x)",

in which w remains anonymous.
Let x,y€R be representable such that their exponents satisfy

{4.5) exzey.

In particular, this holds if x, v€R satisfy
{(4.7) Theorem. If R has the form (2.2}, where f# = 2 or 3 and M is a multiple
of 8, and if, moreover, floating-point addition is optimal and subtraction faithful,

then, for all » and y satisfying (4.5) and for z obtained according to (4.1}, formula
{4.3) yields the correction term zz defined by (4.2).
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function [s,e] = kahan0(x,y);
if (abs(x)< abs(y))
ot temp =a; a=b; b=temp
sHe=a4y end
S = X+Y;
e = y-(s-x);

s=fl(z+y),w="Fl(s—x),c=fl(y — w)

AHAAAH yia kdde Cevydipl TpooBeTéEWwY (x,y)
MTOPOUUE VO UTTOAOYLOOUVE aAKPLPGDC TNV TTPO-
o€yyLon tov adpolouatog s = fl(x + y) koL
gvay (YEVLKA TOAD ULKPO) OLK.VU. ¢ IOV OF o-
PLBUNTLKY) ATeLpNG akplpeLac umopel vo dLop-
VWOOEL TO s KOL VO TO EMAVAPEPEL OTNV TLUN
TOV aKpPLPOVG adpolouatog = + y.
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Nwg xpnoigoTtroigital 1o € (oav carry);

To fl(s) eival To kaAUTepo Suvato (akpifn
oTpoyyUAguon)

dpa n di16pbwon flI(fl(c)+fl(x+y)) dev odnysi o€
aKkpIBéoTepOo GOpoIoHa

AAAG av éxoupe va TTpooBécoupe Kal GAAov apiOuo,
Z, TOTE NTTOPOUME VA «OI0POWOCOUNE» ME TO C

function [s] = kahanl (x)
s =0; e =0;
for j = 1l:1length(x)

temp = s

y=x(j) +e

s =s +y

e = (temp-s)+y
end

MavemoTrApio Marpwv

/ 0‘19’2;510
92103707 030
VVI""“;,L"tt‘I’g‘ } o1 o
40910503 010
71050509102510
240339510930

1516TNTOa AvTIoTABHICUEVNG GBpOoIong 1_%‘?‘%&
_1101010“;

Mevika o akpIBg atrd Kavoviki aépoion.
ATrodeIkvUeTAl OTI TO ABPOICHA N OTOIXEIiWV
fli(s) = X(1+y;) Xx;
61Tou
AnAadn

o€ TTPWTN TTPOCEYYION, TO Tiow oQEAAua sivai
ave§dprnTo amo 1o N.

i
MavemoTrApio Matpwv

Page 5



Mapddeiypa

=1/n * ones(n,1)
ToTe BewpnTikd, sum(x) = 1
ExteAoupe o MATLAB

‘EoTWw X

n sum(x) kahanl(x) abs(1-sum(x)) abs(1-kahanl(x))
10 9.999999999999999e-01 1 1.1102e-016 0
100 1.000000000000001e+00 1 6.6613e-016 0
104 9.999999999980838e-01 1 1.9162e-012 0
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Journal of Economic Literature
Vol. XXXVII (June 1999), pp. 633-665
The Numerical Reliability
of Econometric Software
B. D. MCCULLOUGH
and
H. D. Vinop!
1. Introduction 1990-97, over 120 reviews appeared. All
) . but three paid no attention to numerical
Numerical software is central to our comput- d I Lied
erized society; it is used . . . to analyze fu- accuracy., and only two aPP e
ture options for financial markets and the than a Slngle test .Of numerical accuracy
economy. It is essential that it be of high (Michael Veall 1991, and MCCuHOugh
quality; fast, accurate, reliable, easily moved 1997, but see also Vinod 1989 and Colin
to new machines, and easy to use. (Ford and McKenzie 1998). Since computation is
Rice 1994) el pute
the raison d’etre of an econometric pack-
APART FROM COST considerations,  age, this lacuna is all the more puzzling
economists generally choose their  given the failure of many statistical pack-
Z2x85in ol |
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into the final result, so perhaps the

_answer is not so obvious.*

Improper attention to the method of
rounding can produce disastrous re-
sults. The Wall Street Journal (Novem-
ber 8, 1983, p. 37) reported on the Van-
couver Stock Exchange, which created
an index much like the Dow-Jones In-
dex. It began with a nominal value of
1,000.000 and was recalculated after
each recorded transaction by calcula-
tion to four decimal places, the last
place being truncated so that three
decimal places were reported. Truncat-
ing the fourth decimal of a number
measured to approximately 10° might
seem innocuous. Yet, within a few
months the index had fallen to 520,
while there was no general downturn in
economic activity. The problem, of
course, was insufficient attention given
to the method of rounding. When
recalculated properly, the index was
found to be 1098.892 (Toronto Star,

[_Z2x95in

November 29. 1983).

binary representation with period four,
02(0.1) = 0.000110011 where an overbar
indicates infinite repetition. However,
a computer has finite storage. If it has
23 bits of storage to the right of the
decimal, it will hold the decimal 0.1
in memory as the binary number
$2(0.1) = 0.00011001100110011001100110
where () is the stored version of ¢a(:).
Since (0.1 is an infinitel/y repeating
number, the stored version §2(0.1) is not
exactly equal to the decimal 0.1 it rep-
resents. If the stored binary number
$2(0.1) is reconverted to decimal, it be-
comes 0.09999999403953. Thus, the
computer “sees” 0.1 as something
slightly less than 0.1. This has some in-
teresting implications. First, it implies
that rescaling a number by 10 can cause
a loss of precision, since the exponent is
stored base-2 rather than base-10. Sec-
ond, reading data and performing a
units conversion is different from read-
ing already-converted data, a most dis-
comfiting situation for those who en-
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unprofessional behavior (;
withholding data and prog

g.. fraud). negative rewards flow to the rescarcher. So long as
am code does not reduce the post-publication stream of
rewards (and disclosure of data and program code does not increase it), researchers will
rationally choose not to disclose data and programs.” Such models largely explain the

well-known proclivity of academic rescarchers in many disciplines to keep seeret their =

data and programs (, , ., Fienberg et al., 1985; Bornstein, 2001: Boruch and Cordray.

ilai a

1985; Bailair, 2003). 2
At least insofar as the accuracy of published results is concerned, applied economics Z

is a “poor relation” to theoretical economies. Theoretical economie results, generally i

speaking, are sounder than empirical economie results. The reason for this is simple: the |
process by which the researcher obtained the result is transparent and amenable to

verification. Frequently referees check to make sure that theorems are correet and, if the
referee has not vouchsafed every part of the article, the interested reader can do so. Not

so with empirical economies, where the process of obtaining a result is far from @

transparent, and myriad details not described in the text can be found only in the code.
Empirical economics, by actively discouraging replication, does not incorporate the self-
correcting mechanism of the scientific method -- there is no process whereby bad results

Previous studies by two of the present authors have found that, left to themselves,
many cconomists (and cconometricians) do not understand the difference between

2 How To..?
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algebraic caleulations and ¢ picqr caleulations: Altman (2003) contains a number of
excellent discussions of the issucs. Perhaps the most frequent (and cgregious) example is
calculating the cocfficient vector of an ordinary least squares regression. The algebraic

1 : i :
x 'y - is well-known to have poor numerical propertics

formula., =(x ' 1)
(McCullough and Vinod, 1999). It is nonetheless commonplace for GAUSS and Matlab
code written by economists to implement the algebraic formula rather than the QR
decomposition. But, without access to an author’s code, how can a reader know how the
article’s results were obtained?

7 The model of Feigenbaum and Levy (1993), in which rewards to researchers are driven by citations, also
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High-Precision Floating-Point Arithmetic
in Scientific Computation
David H. Bailey
28 Janmary 2005

Abstract

At the present time, IEEE 64-bit floating-point arithmetic is sufficiently accurate for
most scientific applications. However, for a rapidly growing body of important scientific
computing applications, a higher level of numeric precision is required: some of these appli-
cations require roughly twice this level; others require four times; while still others require
hundreds or more digits to obtain numerically meaningful results. Such caleulations have
been facilitated by new high-precision software packages that include high-level langnage
translation modules to minimize the conversion effort. These activities have yielded a
number of interesting new scientific results in fields as diverse as quantum theory, climate
modeling and experimental mathematics, a few of which are described in this article.
Such developments suggest that in the future, the numeric precision used for a scientific
computation may be as important to the program design as are the algorithms and data
structures.
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3. Climate Modeling

It is well-known that weather or climate simulations are fundamentally chaotic—if
microscopic changes are made to the present state, within a certain period of simulated
time the future state is completely different. Indeed, ensembles of these calculations are
required to obtain statistical confidence in global climate trends produced from such cal-
culations. As a result, computational scientists involved in climate modeling applications
have long resigned themselves that their codes quickly diverge from any “baseline” cal-
culation, even if they only change the number of processors used to run the code. As a
result, it is not only difficult for researchers to compare results, but it is often problematic
even to determine whether they have correctly deployed their code on a given system.

Recently Helen He and Chris Ding, two researchers at LBNL, investigated this non-
reproducibility phenomenon in a widely-used climate modeling code. They found that
almost all of the numerical variation occurred in one inner product loop In the atmospheric
data assimilation step, and in a similar operation in a large conjugate gradient caleulation.
He and Ding found that a straightforward solution was to employ double-double arithmetic
(using the DDFUN package above) for these loops. This single change dramatically
reduced the numerical variability of the entire application, permitting computer runs to
be compared for much longer run times than before. Details of their work can be read in
[21].

In retrospect, it is not clear that handling these sums in this manner is the best
solution—there may be other ways to preserve meaningful mimerical accuracy, while at
the same time yielding reproducible results. Such phenomena deserve further study and
refinement and are being investigated. But in the meantime, He and Ding’s solution 1s a
straightforward and effective means of dealing with this problem.

MavemoTrApio Matpwv
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9. Computational Geometry and Grid Generation

Grid generation, contour mapping and several other computational geometry applica-
tions crucially rely on highly accurate arithmetic. This is because small numerical errors
can lead to geometrically inconsistent results. Such difficulties are inherent in the mathe-
matics of the formulas commonly used in such caleulations and cannot be easily remedied.
For example, Williamn Kahan and Joseph Darcy have shown that small mimerical errors
in the computation of the point nearest to a given point on a line of intersection of two
planes can result in the computed point being so far from either plane as to rule out the
solution belng correct for a reasonable perturbation of the original problem [23].

Two commonly used computational geometry operations are the orientation test and
the incircle test. The orientation test attempts to unambiguously determine whether a
point lies to the left of, to the right of, or on a line or plane defined by other points.
In a similar way, an incircle test determines whether a point lies inside, outside, or on a

circle defined by other peints. Each of these tests is typically performed by evaluating the
sign of a determinant that is expressed in terms of the coordinates of the points. If these
coordinates are expressed as single or double precision foating-point numbers, roundoff
error may lead to an incorrect result when the true determinant is near zero. In turn,
this misinformation can lead an application to fail or produce incorrect results, as noted
above.

To remedy such problems, Jonathan Shewchuk has produced a software package that
performs “adaptive” floating-point arithmetic, which dynamically increases numerie preci-
sion until an unambiguocus result is obtained. This software and some related information

MavemoTrApio Marpwv
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Figure 2: Some new math identities found by high-precision computations
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40 A. M. Turing

tion of a process, but the logical control of the proposed calculator has been A. M. TURING’S ACE REPORT OF 1946
designed largely with such cases in veiw, and will have no difficulty on this

score. The problem proposed is one which is well within the scope of the AND OTHER PAPERS
machine, and could be run offin a few minutes, assuming it was done as one

of a sequence of similar problems. It is quite outside the scope of hand edited by

methods.

B. E. Carpenter and R. W. Doran

Problem 3 Thesolution of simultaneous linear equations. In this problem

we are likely to be limited by the storage capacity of the machine. If the
cocfficients in the equations are essentially random we shall need to be able
to store the whole matrix of coefficients and probably also at least one
subsidiary matrix. If we have a storage capacity of 6400 numbers we cannot
expect to be able to solve equations in more than about 50 unknowns, In
practice, however, the majority of problems have very degenerate matrices
and we do not need to store anything like as much. For instance problem
(2) above can be transformed into one requiring the solution of linear
simultancous equations if we replace the continuum by a lattice, The
coefficients in these equations are very systematic and mostly zero. In this
problem we should be limited not by the storage required for the matrix of
coefficients, but by that required for the solution or for the approximate
solutions.

Problem 4 To caleulate the radiation from the open end of a rectangular
wave-guide. The complete polar diagram for the radiation could be cal-
culated, together with the reflection coefficient for the end of the guide and
interaction coefficients for the various modes; this would be done for any

given wavelength and guide dimensions. The MIT Press
Problem 5 Given two matrices of degree less than 30 whose coefficients Cambridge, Massachusetts
are polynomials of degree less than 10, the machine could multiply the London, England
matrices together, giving a result which is another matrix also having

polynomial coefficients. This has important applications in the design of ""III

optical instruments,

Problem6  Given a complicated electrical circuit and the characteristics of and

its components, the response to given input signals could be calculated. A

standard code for the description of the components could easily be devised Tomash Publishers

for this purpose, and also a code for describing connections. There is no Los Angeles/San Francisco

need for the characteristics to be linear.

.‘15..

problen proposed is one widch is well within the scope of the mechine,
and could be run off in a few minutes, sssuming it was done os one of .
£ seguence ol similar problens. It is quite outoide the scope of hand
methods.

Problem 3.,- The solution of simultaneocus linear aquat.im}s. In
this Problén we ore likely to be limited by the storege capecity of
the maehine, 1If the coefficients in the equations are essentially
rondom we shill need to be oble to store the whole matrix of
coefficients :nd probably also at lesst one subsidiory matrix If we
have o storige capocity of GLOO numbers we cannot expect to be able to
solve equations in more thrn about 50 unknewns.  In practice, however,
the majority of problems have very degenerate metrices end we do not
need to store anything like as much. For instance problem (2) sbove
can be. transformed into one requiring the solution of 1inearl
simultaneous equations if we replace the continuum by o lettice. The
cocfficients in thesc equations are very systematio and mostly zero,
In tids problo: we should be limited not by the storage rﬁquir?d for
the meirix of coelficients, but by that reguired for the solution or for
the eppro:duste solutions.

Prcblem be- To colculabte the radiation fraa the open end o;" a
rootan il vove-guide,  The camlete polew diagram f'oF Fhe 1‘;615};?.mn
could te caloulated, together with the reflection coefficient for fi
end of the juide and interaction ccefficicnts for the variou; modes;
his would-be done for any given wavelength and puide dimensions,

Problem 5. Given two mairices of degree leas then 30 vhose
cocfficients e pelynamiale of dsgroc less than 10, the machine cc\ill_l
maliiply irices togother, giving a result whicl is another motrix
also hewving polymominl coefficients. This hos important applications
in the design of optienl insiruments.
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