CHAPTER 9

Introduction to Mechanism
Design (for Computer Scientists)

Noam Nisan

Abstract

We give an introduction to the micro-economic field of Mechanism Design slightly biased toward a
computer-scientist’s point of view.

9.1 Introduction

Mechanism Design is a subfield of economic theory that is rather unique within eco-
nomics in having an engineering perspective. It is interested in designing economic
mechanisms, just like computer scientists are interested in designing algorithms, pro-
tocols, or systems. It is best to view the goals of the designed mechanisms in the
very abstract terms of social choice. A social choice is simply an aggregation of the
preferences of the different participants toward a single joint decision. Mechanism
Design attempts implementing desired social choices in a strategic setting — assuming
that the different members of society each act rationally in a game theoretic sense.
Such strategic design is necessary since usually the preferences of the participants are
private.

This high-level abstraction of aggregation of preferences may be seen as a common
generalization of a multitude of scenarios in economics as well as in other social
settings such as political science. Here are some basic classic examples:

¢ Elections: In political elections each voter has his own preferences between the different
candidates, and the outcome of the elections is a single social choice.

¢ Markets: Classical economic theory usually assumes the existence and functioning of
a “perfect market.” In reality, of course, we have only interactions between people, gov-
erned by some protocols. Each participant in such an interaction has his own preferences,
but the outcome is a single social choice: the reallocation of goods and money.

* Auctions: Generally speaking, the more buyers and sellers there are in a market, the
more the situation becomes close to the perfect market scenario. An extreme opposite
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case is where there is only a single seller — an auction. The auction rules define the social
choice: the identity of the winner.

* Government policy: Governments routinely have to make decisions that affect a multi-
tude of people in different ways: Should a certain bridge be built? How much pollution
should we allow? How should we regulate some sector? Clearly each citizen has a
different set of preferences but a single social choice is made by the government.

As the influence of the Internet grew, it became clear that many scenarios happening
there can also be viewed as instances of social choice in strategic settings. The main
new ingredient found in the Internet is that it is owned and operated by different
parties with different goals and preferences. These preferences, and the behavior they
induce, must then be taken into account by every protocol in such an environment. The
protocol should thus be viewed as taking the preferences of the different participants
and aggregating them into a social choice: the outcome of the run of the protocol.

Conceptually, one can look at two different types of motivations: those that use
economics to solve computer science issues and those that use computer science to
solve economic issues:

¢ Economics for CS: Consider your favorite algorithmic challenge in a computer network
environment: routing of messages, scheduling of tasks, allocation of memory, etc. When
running in an environment with multiple owners of resources or requests, this algorithm
must take into account the different preferences of the different owners. The algorithm
should function well assuming strategic selfish behavior of each participant. Thus we
desire a Mechanism Design approach for a multitude of algorithmic challenges — leading
to a field that has been termed Algorithmic Mechanism Design.

* CS for economics: Consider your favorite economic interaction: some type of market,
an auction, a supply chain, etc. As the Internet becomes ubiquitous, this interaction will
often be implemented over some computerized platform. Such an implementation en-
ables unprecedented sophistication and complexity, handled by hyperrationally designed
software. Designing these is often termed Electronic Market Design.

Thus, both Algorithmic Mechanism Design and Electronic Market Design can be
based upon the field of Mechanism Design applied in complex algorithmic settings.

This chapter provides an introduction to classical Mechanism Design, intended for
computer scientists. While the presentation is not very different from the standard
economic approach, it is somewhat biased toward a worst-case (non-Bayesian) point
of view common in computer science.

Section 9.2 starts with the general formulation of the social choice problem, points
out the basic difficulties formulated by Arrow’s famous impossibility results, and
deduces the impossibility of a general strategic treatment, i.e. of Mechanism Design in
the general setting. Section 9.3 then considers the important special case where “money”
exists, and describes a very general positive result, the incentive-compatible Vickrey—
Clarke—Grove mechanism. Section 9.4 puts everything in a wider formal context of
implementation in dominant strategies. Section 9.5 provides several characterizations
of dominant strategy mechanisms. All the sections up to this point have considered
dominant strategies, but the prevailing economic point of view is a Bayesian one that
assumes a priori known distributions over private information. Section 9.6 introduces
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this setting and the notion of Bayesian-Nash equilibrium that fits it. All the treatment
in this chapter is in the very basic “private value” model, and Section 9.7 shortly points
out several extensions to the model. Finally, Section 9.8 provides bibliographic notes
and references.

9.2 Social Choice

This section starts with the general social choice problem and continues with the
strategic approach to it. The main message conveyed is that there are unavoidable
underlying difficulties. We phrase things in the commonly used terms of political
elections, but the reader should keep in mind that the issues are abstract and apply to
general social choice.

9.2.1 Condorcet’s Paradox

Consider an election with two candidates, where each voter has a preference for one
of them. If society needs to jointly choose one of the candidates, intuitively it is clear
that taking a majority vote would be a good idea. But what happens if there are three
candidates? In 1785, The Marquis de Condorcet pointed out that the natural application
of majority is problematic: consider three candidates — a, b, and ¢ — and three voters
with the following preferences:

) a=1b>=1c¢
@ii) b >, c>a
(iii) ¢ >3a >3 b

(The notation a >; b means that voter i prefers candidate a to candidate b.) Now,
notice that a majority of voters (1 and 3) prefer candidate a to candidate b. Similarly,
a majority (1 and 2) prefers b to ¢, and, finally, a majority (2 and 3) prefers ¢ to a. The
joint majority choice is thus a > b > ¢ > a which is not consistent. In particular for
any candidate that is jointly chosen, there will be a majority of voters who would want
to change the chosen outcome.

This immediately tells us that in general a social choice cannot be taken simply
by the natural system of taking a majority vote. Whenever there are more than two
alternatives, we must design some more complex “voting method” to undertake a social
choice.

9.2.2 Voting Methods

A large number of different voting methods — ways of determining the outcome of such
multicandidate elections — have been suggested. Two of the simpler ones are plurality
(the candidate that was placed first by the largest number of voters wins) and Borda
count (each candidate among the n candidates gets n — i points for every voter who
ranked him in place i, and the candidate with most points wins). Each of the suggested
voting methods has some “nice” properties but also some problematic ones.

One of the main difficulties encountered by voting methods is that they may encour-
age strategic voting. Suppose that a certain voter’s preferences are a >; b >; c, but he
knows that candidate a will not win (as other voters hate him). Such a voter may be
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motivated to strategically vote for b instead of a, so that b is chosen which he prefers
to c¢. Such strategic voting is problematic as it is not transparent, depends closely on
the votes of the other voters, and the interaction of many strategic voters is complex.
The main result of this section is the Gibbard—Satterthwaite theorem that states that
this strategic vulnerability is unavoidable. We will prove the theorem as a corollary of
Arrow’s impossibility theorem that highlights the general impossibility of designing
voting methods with certain natural good desired properties.

Formally, we will consider a set of alternatives A (the candidates) and a set of n
voters I. Let us denote by L the set of linear orders on A (L is isomorphic to the set
of permutations on A). Thus for every < € L, < is a total order on A (antisymmetric
and transitive). The preferences of each voter i are formally given by >; € L, where
a >; b means that i prefers alternative a to alternative b.

Definition 9.1
e A function F : L" — L is called a social welfare function.

* A function f : L™ — A is called a social choice function.

Thus a social welfare function aggregates the preferences of all voters into acommon
preference, i.e., into a total social order on the candidates, while a social choice function
aggregates the preferences of all voters into a social choice of a single candidate.
Arrow’s theorem states that social welfare functions with “nice” properties must be
trivial in a certain sense.

9.2.3 Arrow’s Theorem

Here are some natural properties desired from a social welfare function.

Definition 9.2

¢ A social welfare function F satisfies unanimity if forevery < € L, F(<, ..., <) =
<. That is, if all voters have identical preferences then the social preference is the
same.

e Voter i is a dictator in social welfare function F if for all <;... <, €L,
F(<1,...,=<;) = <;. The social preference in a dictatorship is simply that of the

dictator, ignoring all other voters. F is not a dictatorship if no i is a dictator in it.

* A social welfare function satisfies independence of irrelevant alternatives if the
social preference between any two alternatives a and b depends only on the voters’
preferences between a and b. Formally, for every a,b € A and every <y, ...,
<n, <] ..., =<, € L,if we denote < = F(<y,...,<,)and <’ = F(<},..., <))
thena <; b < a <; b for all i implies thata < b < a <" b.

The first two conditions are quite simple to understand, and we would certainly want
any good voting method to satisfy the unanimity condition and not to be a dictatorship.
The third condition is trickier. Intuitively, indeed, independence of irrelevant alterna-
tives seems quite natural: why should my preferences about ¢ have anything to do with
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the social ranking of @ and b? More careful inspection will reveal that this condition in
some sense captures some consistency property of the voting system. As we will see,

lack of such consistency enables strategic manipulation.

Theorem 9.3 (Arrow) Every social welfare function over a set of more than
2 candidates (|A| > 3) that satisfies unanimity and independence of irrelevant
alternatives is a dictatorship.

Over the years a large number of proofs have been found for Arrow’s theorem. Here
is a short one.

PROOF For the rest of the proof, fix F' that satisfies unanimity and independence
of irrelevant alternatives. We start with a claim showing that the same social
ranking rule is taken within any pair of alternatives.

Claim (pairwise neutrality) Let >;,...,>, and >},..., >, be two player
profiles such that for every player i, a >; b < ¢ >/ d. Thena > b & ¢ >'d,
where > = F(>1,...,>,)and >" = F(>|, ..., >)).

By renaming, we can assume without loss of generality that ¢ > b and that
¢ # b. Now we merge each >; and > into a single preference >; by putting ¢
just above a (unless ¢ = a) and d just below b (unless d = b) and preserving the
internal order within each of the pairs (a, b) and (c, d). Now using unanimity, we
have that ¢ > a and b > d, and by transitivity ¢ > d. This concludes the proof of
the claim.

We now continue with the proof of the theorem. Take any a # b € A, and
for every 0 < i < n define a preference profile 7/ in which exactly the first i
players rank a above b, i.e.,in ', a >; b < j < i (the exact ranking of the other
alternatives does not matter). By unanimity, in F (no), we have b > a, while in
F(m") we have a > b. By looking at 7%, 7!, ... 7", at some point the ranking
between a and b flips, so for some i* we have that in F(r '), b > a, while in
F(r™), a > b. We conclude the proof by showing that i* is a dictator.

Claim Takeanyc #d € A.If ¢ >;« d then ¢ > d where == F(>1, ..., >,).

Take some alternative e which is different from ¢ and d. For i < i* move e
to the top in >;, for i > i* move e to the bottom in >;, and for i* move e so
that ¢ >« e >;= d — using independence of irrelevant alternatives we have not
changed the social ranking between ¢ and d. Now notice that players’ preferences
for the ordered pair (c, ) are identical to their preferences for (a, b) in 7", but
the preferences for (e, d) are identical to the preferences for (a, b) in 7' ~! and
thus using the pairwise neutrality claim, socially ¢ > e and e > d, and thus by
transitivity ¢ > d. 0O

9.2.4 The Gibbard-Satterthwaite Theorem

It turns out that Arrow’s theorem has devastating strategic implications. We will study
this issue in the context of social choice functions (rather than social welfare functions

as we have considered until now). Let us start by defining strategic manipulations.
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Definition 9.4 A social choice function f can be strategically manipulated by
voter i if for some <, ..., <, € L and some <. € L we have that a <; a’ where
a= f(<1,...,<iy...,<p) and a’ = f(<y,...,<},..., <,). That is, voter i
that prefers a’ to a can ensure that a’ gets socially chosen rather than a by
strategically misrepresenting his preferences to be < rather than <;. f is called
incentive compatible if it cannot be manipulated.

The following is a more combinatorial point of view of the same notion.

Definition 9.5 A social choice function f is monotone if f(<y,..., <;,...,
<p) =a#a = f(<1,...,<},...,<,) implies that a’ <; a and a <] a’. That
is, if the social choice changed from a to @’ when a single voter i changed his
vote from <; to < then it must be because he switched his preference between a
and a’.

Proposition 9.6 A social choice function is incentive compatible if and only if
it is monotone.

PROOF Take <y,..., <;_1, <j+1, ..., <, out of the quantification. Now, logi-
cally, “NOT monotone between <; and <;” is equivalent to “A voter with pref-
erence < can strategically manipulate f by declaring <’ OR “A voter with
preference <’ can strategically manipulate f by declaring <”. O

The obvious example of an incentive compatible social choice function over two
alternatives is taking the majority vote between them. The main point of this section
is, however, that when the number of alternatives is larger than 2, only trivial social
choice functions are incentive compatible.

Definition 9.7 Voter i is a dictator in social choice function f if for all <,
e, =<p€L,YDF#a,a> b= f(<1,...,<,)=a. f is called a dictatorship
if some i is a dictator in it.

Theorem 9.8 (Gibbard—Satterthwaite) Let f be an incentive compatible so-
cial choice function onto A, where |A| > 3, then f is a dictatorship.

Note the requirement that f is onto, as otherwise the bound on the size of A has
no bite. To derive the theorem as a corollary of Arrow’s theorem, we will construct a
social welfare function F from the social choice function f. The idea is that in order
to decide whether a < b, we will “move” a and b to the top of all voters’ preferences,
and then see whether f chooses a or b. Formally,

Definition 9.9

 Notation: Let S C A and < € L. Denote by <% the order obtained by moving
all alternatives in S to the top in <. Formally, fora,b € S, a <5 b < a < b; for
a,b¢gS,alsoa <5b << a<b;butforag Sandb € S,a <5 b.
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* The social welfare function F that extends the social choice function f is defined
by F(<1, ..., <n) =<, where a < biff f(<“" .. <Py —p,

We first have to show that F is indeed a social welfare function, i.e., that it is
antisymmetric and transitive.

Lemma 9.10 [f f is an incentive compatible social choice function onto A then
the extension F is a social welfare function.

To conclude the proof of the theorem as a corollary of Arrow’s, it then suffices to
show:

Lemma 9.11 If f is an incentive compatible social choice function onto A,
which is not a dictatorship then the extension F satisfies unanimity and indepen-
dence of irrelevant alternatives and is not a dictatorship.

PROOF OF LEMMAS 9.10 AND 9.IT We start with a general claim which holds
under the conditions on f:

Claim: For any <, ..., <, and any S, f(<3,...,<5) € S.
Take some a € S and since f is onto, for some </, ..., <), f(<],..., <)) =
a.Now, sequentially, fori = 1, ..., n, change <] to < lS . We claim that at no point

during this sequence of changes will f output any outcome b ¢ S. At every stage
this is simply due to monotonicity since b <[S a’ for a’ € S being the previous
outcome. This concludes the proof of the claim.

We can now prove all properties needed for the two lemmas:

* Antisymmetry is implied by the claim since f(<\“", ..., <"y e {a, b}.

* Transitivity: assume for contradiction that a < b < ¢ < a (where < = F(<|,
..y =<p)). Take S = {a, b, ¢} and using the claim assume without loss of gen-

erality that f(<},..., <5) = a. Sequentially changing <} to <§a’b} for each i,
monotonicity of f implies that also f(<{1a’b}, e, <£l“’b}) = qa, and thus a > b.

{a
i

e Unanimity: If for all i, b <; a, then (<}“'h}){“} = <! and thus by the claim

f(<{1a’h}, L, <lably g

* Independence of irrelevant alternatives: If foralli,b <; a < b <; a,then f (<{,“’b},

, <lably f(</l{a’b}, ..., <@ Gince when we, sequentially for all i, flip

<l{a'b} into <;{“’b} , the outcome does not change because of monotonicity and the
claim.

* Nondictatorship: obvious. [

The Gibbard—Satterthwaite theorem seems to quash any hope of designing incentive
compatible social choice functions. The whole field of Mechanism Design attempts
escaping from this impossibility result using various modifications in the model. The
next section describes how the addition of “money” offers an escape route. Chapter 10
offers other escape routes that do not rely on money.
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9.3 Mechanisms with Money

In the previous section, we modeled a voter’s preference as an order on the alternatives.
a >; b implies that i prefers a to b, but we did not model “by how much” is a
preferred to b. “Money” is a yardstick that allows measuring this. Moreover, money
can be transferred between players. The existence of money with these properties is an
assumption, but a fairly reasonable one in many circumstances, and will allow us to do
things that we could not do otherwise.

Formally, in this section we redefine our setting. We will still have a set of alternatives
A and a set of n players I (which we will no longer call voters). The preference of
a player i is now given by a valuation function v; : A — 9, where v;(a) denotes the
“value” that i assigns to alternative a being chosen. This value is in terms of some
currency; i.e., we assume that if a is chosen and then player i is additionally given
some quantity m of money, then i’s utility is u; = v;(a) + m, this utility being the
abstraction of what the player desires and aims to maximize. Utilities of this form
are called quasilinear preferences, denoting the separable and linear dependence on
money.

9.3.1 Vickrey’s Second Price Auction

Before we proceed to the general setting, in this subsection we study a basic example:
a simple auction. Consider a single item that is auctioned for sale among n players.
Each player i has a scalar value w; that he is “willing to pay” for this item. More
specifically, if he wins the item, but has to pay some price p for it, then his utility is
w; — p, while if someone else wins the item then i’s utility is 0. Putting this scenario
into the terms of our general setting, the set of alternatives here is the set of possible
winners, A = {i—wins|i € I}, and the valuation of each bidder i is v;(i—wins) = w;
and v;(j—wins) = 0 for all j # i. A natural social choice would be to allocate the item
to the player who values it highest: choose i-wins, where i = argmax;w;. However,
the challenge is that we do not know the values w; but rather each player knows his
own value, and we want to make sure that our mechanism decides on the allocation —
the social choice — in a way that cannot be strategically manipulated. Our degree of
freedom is the definition of the payment by the winner.

Let us first consider the two most natural choices of payment and see why they do
not work as intended:

* No payment: In this version we give the item for free to the player with highest w;.
Clearly, this method is easily manipulated: every player will benefit by exaggerating his
w;, reporting a much larger w; > w; that can cause him to win the item, even though
his real w; is not the highest.

¢ Pay your bid: An attempt of correction will be to have the winner pay the declared bid.
However, this system is also open to manipulation: a player with value w; who wins
and pays w; gets a total utility of 0. Thus it is clear that he should attempt declaring
a somewhat lower value w; < w; that still wins. In this case he can still win the item
getting a value of w; (his real value) but paying only the smaller w! (his declared value),
obtaining a net positive utility #; = w; — w; > 0. What value w! should i bid then?
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Well, if i knows the value of the second highest bid, then he should declare just above
it. But what if he does not know?

Here is the solution.

Definition 9.12 Vickrey’s second price auction: Let the winner be the player
i with the highest declared value of w;, and let i pay the second highest declared
bid pﬂ< =maX;x; W;.

Now it turns out that manipulation never can increase any players’ utility. Formally,

Proposition 9.13 (Vickrey) For every wy, ..., w, and every w., Let u; be i’s
utility if he bids w; and u); his utility if he bids w;. Then, u; > u.

PROOF Assume that by saying w; he wins, and that the second highest (reported)
valueis p*,thenu; = w; — p* > 0. Now, for an attempted manipulation w; > p*,
i would still win if he bids w; and would still pay p*, thus u; = u;. On the other
hand, for w; < p*, i would lose so u; = 0 < u;.

If i loses by bidding w;, then u; = 0. Let j be the winner in this case, and
thus w; > w;. For w; < w;, i would still lose and so u; =0 = u;. For w; >
wj, i would win, but would pay wj;, thus his utility would be u; = w; — w; <
O=wu;. O

This very simple and elegant idea achieves something that is quite remarkable:
it reliably computes a function (argmax) of n numbers (the w;’s) that are each
held secretly by a different self-interested player! Taking a philosophical point of
view, this may be seen as the mechanics for the implementation of Adam Smith’s
invisible hand: despite private information and pure selfish behavior, social wel-
fare is achieved. All the field of Mechanism Design is just a generalization of this
possibility.

9.3.2 Incentive Compatible Mechanisms

In a world with money, our mechanisms will not only choose a social alternative but will
also determine monetary payments to be made by the different players. The complete
social choice is then composed of the alternative chosen as well as of the transfer
of money. Nevertheless, we will refer to each of these parts separately, calling the
alternative chosen the social choice, not including in this term the monetary payments.

Formally, a mechanism needs to socially choose some alternative from A, as well
as to decide on payments. The preference of each player i is modeled by a valuation
function v; : A — R, where v; € V;. Throughout the rest of this chapter, V; € i1 isa
commonly known set of possible valuation functions for player i.

Starting at this point and for the rest of this chapter, it will be convenient to use the
following standard notation.
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Notation Let v = (vy,...,v,) be an n-dimensional vector. We will denote
the (n — 1)-dimensional vector in which the i’th coordinate is removed by
v_; = (V1,...,Vi_1, Vitl, - - - » Uy). Thus we have three equivalent notations: v =
(1, ..., v,) = (v;, v_;). Similarly, for V. = V| x --- x V,, we will denote V_; =
Vix--ox Vi1 x Vigq x -+ x V,. Similarly we will use _;, x_;, X_;, etc.

Definition 9.14 A (direct revelation) mechanism is a social choice function
f:Vix---xV,— A and a vector of payment functions py, ..., p,, where
pi - Vi x -+ x V, — 9N is the amount that player i pays.

The qualification “direct revelation” will become clear in Section 9.4, where we will
generalize the notion of a mechanism further. We are now ready for the key definition
in this area, incentive compatibility also called strategy-proofness or truthfulness.

Definition 9.15 A mechanism (f, pj, ..., p,) is called incentive compatible if
forevery playeri,everyv; € Vi,...,v, € V, andevery v; € V;,if wedenotea =
fi,v_)and a’ = f(v], v_;), then vi(a) — p;(vi, v—;) = vi(a’) — pi(V;, v_y).

Intuitively this means that player i whose valuation is v; would prefer “telling the
truth” v; to the mechanism rather than any possible “lie” v;, since this gives him higher
(in the weak sense) utility.

9.3.3 Vickrey—Clarke-Groves Mechanisms

While in the general setting without money, as we have seen, nothing nontrivial is
incentive compatible, the main result in this setting is positive and provides an incentive
compatible mechanism for the most natural social choice function: optimizing the social
welfare. The social welfare of an alternative a € A is the sum of the valuations of all
players for this alternative, ) ; v;(a).

Definition 9.16 A mechanism (f, p1,..., p,) is called a Vickrey—Clarke—

Groves (VCG) mechanism if

¢ f(vi,...,v,) € argmax, Zi v;(a); that is, f maximizes the social welfare, and

* for some functions Ay, ..., h,, where h; : V_; = 0N (i.e., h; does not depend
on v;), we have that for all vy € Vi,...,v, € V,: pi(vy,...,v,) = h;i(v_;) —

Z_,‘;éi vi(fur, ..., v).

The main idea lies in the term — ) ot v;(f(v1, ..., vy)), which means that each
player is paid an amount equal to the sum of the values of all other players. When this
term is added to his own value v;(f(vy, ..., v,)), the sum becomes exactly the total
social welfare of f(vy, ..., v,). Thus this mechanism aligns all players’ incentives
with the social goal of maximizing social welfare, which is exactly archived by telling
the truth. The other term in the payment #;(v;) has no strategic implications for player
i since it does not depend, in any way, on what he says, and thus from player i ’s point
of view it is just a constant. Of course, the choice of i; does change significantly how
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much money is paid and in which direction, but we will postpone this discussion. What
we have just intuitively explained is as follows.

Theorem 9.17 (Vickrey—-Clarke-Groves) Every VCG mechanism is incentive
compatible.

Let us prove it formally.

PROOF Fix i, v_;, v;, and v;. We need to show that for player i with valuation
v;, the utility when declaring v; is not less than the utility when declaring v;.
Denote a = f(v;, v_;) and a’ = f (v, v_;). The utility of i, when declaring v;,
isvi(a) + 3 ;; vi(a) — hi(v_;), but when declaring v; is v;(a’) + 3 v;j(a’) —
h;(v_;). But since a = f(v;, v_;) maximizes social welfare over all alternatives,
vi(a) + Z#i vj(a) > vi(a') + Z#i vj(a’) and thus the same inequality holds
when subtracting the same term /;(v_;) from both sides. O

9.3.4 Clarke Pivot Rule

Let us now return to the question of choosing the “right” h;’s. One possibility is
certainly choosing #; = 0. This has the advantage of simplicity but usually does not
make sense since the mechanism pays here a great amount of money to the players.
Intuitively we would prefer that players pay money to the mechanism, but not more
than the gain that they get. Here are two conditions that seem to make sense, at least in
a setting where all valuations are nonnegative.

Definition 9.18
* A mechanism is (ex-post) individually rational if players always get nonneg-
ative utility. Formally if for every vy, ..., v, we have that v;(f(vy,...,v,)) —

pi(vr, ..., v,) > 0.
* A mechanism has no positive transfers if no player is ever paid money. Formally
if for every vy, ..., v, and every i, p;(vy, ..., v,) > 0.

The following choice of 4;’s provides the following two properties.

Definition 9.19 (Clarke pivot rule) The choice h;(v_;) = maxpes Y i Vi (b)
is called the Clarke pivot payment. Under this rule the payment of player i is
pi(vy, ..., v,) = max, Z#i v;(b) — Z#i vi(a), where a = f(vy, ..., v,).

Intuitively, i pays an amount equal to the total damage that he causes the other
players — the difference between the social welfare of the others with and without i’s
participation. In other words, the payments make each player internalize the externali-
ties that he causes.

Lemma 9.20 A VCG mechanism with Clarke pivot payments makes no positive
transfers. If vi(a) > 0 for every v; € V; and a € A then it is also individually
rational.
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PROOF Leta = f(vy,...,v,) be the alternative maximizing »_ jv j(a) and b
be the alternative maximizing Y i Vj (b). To show individual rationality, the
utility of player i is v;(a) + Zj;éi vj(a) — Z#i v(b) > Zj vj(a) — Zj v(b) >
0, where the first inequality is since v; (b) > 0 and the second is since a was chosen
as to maximize ) i Vi (a). To show no positive transfers, note that p;(vy, ..., v,) =
Z#i v; (b) — Z#i v;(a) > 0, since b was chosen as to maximize Z#i vi(b). O

As stated, the Clarke pivot rule does not fit many situations where valuations are
negative; i.e., when alternatives have costs to the players. Indeed, with the Clarke pivot
rule, players always pay money to the mechanism, while the natural interpretation in
case of costs would be the opposite. The spirit of the Clarke pivot rule in such cases
can be captured by a modified rule that chooses b as to maximize the social welfare
“when i does not participate” where the exact meaning of this turns out to be quite
natural in most applications.

9.3.5 Examples
9.3.5.1 Auction of a Single Item

The Vickrey auction that we started our discussion with is a special case of a VCG
mechanism with the Clarke pivot rule. Here A = {i—wins|i € /}. Each player has
value 0 if he does not get the item, and may have any positive value if he does win the
item, thus V; = {v;|v;(i—wins) > 0 and Vj # i, v;(j—wins) = 0}. Notice that finding
the player with highest value is exactly equivalent to maximizing ) ; v;(i) since only
a single player gets nonzero value. VCG payments using the Clarke pivot rule give
exactly Vickrey’s second price auction.

9.3.5.2 Reverse Auction

In a reverse auction (procurement auction) the bidder wants to procure an item
from the bidder with lowest cost. In this case the valuation spaces are given by
Vi = {v;|v;(i—wins) < 0and Vj # i v;(j—wins) = 0}, and indeed procuring the item
from the lowest cost bidder is equivalent to maximizing the social welfare. The natural
VCG payment rule would be for the mechanism to pay to the lowest bidder an amount
equal to the second lowest bid, and pay nothing to the others. This may be viewed as
capturing the spirit of the pivot rule since the second lowest bid is what would happen
“without i.”

9.3.5.3 Bilateral Trade

In the bilateral trade problem a seller holds an item and values it at some 0 < vy, < 1
and a potential buyer values it at some 0 < v, < 1. (The constants 0 and 1 are ar-
bitrary and may be replaced with any commonly known constants 0 < v; < v;.)
The possible outcomes are A = {no-trade, trade} and social efficiency implies that
trade is chosen if v, > v, and no-trade if vy > v,. Using VCG payments and de-
creeing that no payments be made in case of no-trade, implies that in case of trade
the buyer pays v; and the seller is paid v,. Notice that since in this case v, > vy,
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the mechanism subsidizes the trade. As we will see below in Section 9.5.5, this is
unavoidable.

9.3.5.4 Multiunit Auctions

In a multiunit auction, k identical units of some good are sold in an auction (where
k < n). In the simple case each bidder is interested in only a single unit. In this case
A = {S-wins|S C I, |S| = k}, and a bidder’s valuation v; gives some fixed value v*
if i gets an item, i.e. v;(S) = v* if i € S and v;(S) = 0 otherwise. Maximizing social
welfare means allocating the items to the & highest bidders, and in the VCG mecha-
nism with the pivot rule, each of them should pay the k + 1°st highest offered price.
(Losers pay 0.)

In a more general case, bidders may be interested in more than a single unit and have
a different value for each number of units obtained. The next level of sophistication
comes when the items in the auction are heterogeneous, and valuations can give a
different value to each combination of items. This is called a combinatorial auction
and is studied at length in Chapter 11.

9.3.5.5 Public Project

The government is considering undertaking a public project (e.g., building a bridge).
The project has a commonly known cost C, and is valued by each citizeni at (a privately
known) value v;. (We usually think that v; > 0, but the case of allowing v; < 0, i.e.,
citizens who are hurt by the project is also covered.) Social efficiency means that
the government will undertake this project iff ) ", v; > C. (This is not technically a
subcase of our definition of maximizing the social welfare, since our definition did
not assume any costs or values for the designer, but becomes so by adding an extra
player “government” whose valuation space is the singleton valuation, giving cost C
to undertaking the project and 0 otherwise.) The VCG mechanism with the Clarke
pivot rule means that a player i with v; > 0 will pay a nonzero amount only if he is
pivotal: 3, v; < Cbut} ;v; > Cinwhichcasehe willpay p; = C — 3, v;. (A
player with v; < 0 will make a nonzero payment only if ) Vi >C but ) jvi=C
in which case he will pay p; = ) Vi —C) One may verify that ), p; < C (unless
> ; vi = C), and thus the payments collected do not cover the project’s costs. As we
will see in Section 9.5.5, this is unavoidable.

9.3.5.6 Buying a Path in a Network

Consider a communication network, modeled as a directed graph G = (V, E), where
each link e € E is owned by a different player, and has a cost ¢, > 0 if his link is
used for carrying some message. Suppose that we wish to procure a communication
path between two specified vertices s, t € V; i.e., the set of alternatives is the set of
all possible s — ¢ paths in G, and player e has value O if the path chosen does not
contain e and value —c, if the path chosen does contain e. Maximizing social welfare
means finding the shortest path p (in terms of ), c.). A VCG mechanism that
makes no payments to edges that are not in p, will pay to each ep € p the quantity
D ecp Ce = Deep—(ey) Ce» Where p is the shortest s — ¢ path in G and p’ is the shortest
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s — t path in G that does not contain the edge e (for simplicity, assume that G is 2-edge
connected so such a p’ always exists). This corresponds to the spirit of the pivot rule
since “without ¢” the mechanism can simply not use paths that contain e.

9.4 Implementation in Dominant Strategies

In this section our aim is to put the issue of incentive compatibility in a wider context.
The mechanisms considered so far extract information from the different players by
motivating them to “tell the truth.” More generally, one may think of other, indirect,
methods of extracting sufficient information from the participants. Perhaps one may
devise some complex protocol that achieves the required social choice when players
act strategically. This section will formalize these more general mechanisms, and the
associated notions describing what happens when “players act strategically.”

Deviating from the common treatment in economics, in this section we will describe
a model that does not involve any distributional assumptions. Many of the classical
results of Mechanism Design are captured in this framework, including most of the ex-
isting applications in computational settings. In Section 9.6 we will add this ingredient
of distributional assumptions reaching the general “Bayesian” models.

9.4.1 Games with Strict Incomplete Information

How do we model strategic behavior of the players when they are missing some of
the information that specifies the game? Specifically in our setting a player does not
know the private information of the other players, information that determines their
preferences. The standard setting in Game Theory supposes on the other hand that the
“rules” of the game, including the utilities of all players, are public knowledge.

We will use a model of games with independent private values and strict incomplete
information. Let us explain the terms: “independent private values” means that the
utility of a player depends fully on his private information and not on any information
of others as it is independent from his own information. Strict incomplete information
is a (not completely standard) term that means that we will have no probabilistic
information in the model. An alternative term sometimes used is “pre-Bayesian.” From
a CS perspective, it means that we will use a worst case analysis over unknown
information. So here is the model.

Definition 9.21 A game with (independent private values and) strict incomplete
information for a set of n players is given by the following ingredients:
(i) For every player i, a set of actions X;.

(ii) For every player i, a set of types T;. A value ; € T; is the private information

that i has.

(iii) For every player i, a wtility function u; : T; x X; x .-+ x X, = N, where
u;(t;, x1, ..., x,) is the utility achieved by player i, if his type (private infor-
mation) is #;, and the profile of actions taken by all players is x1, ..., X,.

The main idea that we wish to capture with this definition is that each player i must
choose his action x; when knowing #; but not the other ¢;’s. Note that the #;’s do not



